IEEE Guide to the Installation of Overhead Transmission Line Conductors ANSI/IEEE Std 524-1980 Published by The Institute of Electrical and Electronics Engineers, Inc 345 East 47th Street, New York, NY 10017, USA December 18, 1980 SH07732 # An American National Standard # IEEE Guide to the Installation of Overhead Transmission Line Conductors Sponsor Transmission and Distribution Committee of the IEEE Power Engineering Society Approved December 14, 1978 **IEEE Standards Board** Approved April 29, 1983 **American National Standards Institute** © Copyright 1980 by The Institute of Electrical and Electronics Engineers, Inc 345 East 47th Street, New York, NY 10017, USA No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without prior written permission of the publisher. # Approved December 14, 1978 ## **IEEE Standards Board** Joseph L. Koepfinger, Chairman Irvin N. Howell, Jr. Vice Chairman ## Ivan G. Easton, Secretary William E. Andrus C. N. Berglund Edward J. Cohen Warren H. Cook David B. Dobson R. O. Duncan Charles W. Flint Jay Forster Ralph I. Hauser Loering M. Johnson Irving Kolodny William R. Kruesi Thomas J. Martin John E. May Donald T. Michael Voss A. Moore William S. Morgan Robert L. Pritchard Blair A. Rowley Ralph M. Showers B. W. Whittington # Foreword (This Foreword is not a part of IEEE Std 524-1980, IEEE Guide to the Installation of Overhead Transmission Line Conductors.) This guide was compiled and written by Kenneth L. Griffing, D. H. Gilliam, William J. Bellerby and James W. Reilly. It includes contributions by persons from many electric utility companies and suppliers. However, because of the diversity of methods employed by different companies, only those methods most commonly used are discussed. Brief examination of the guide will serve to familiarize one with the range and completeness of the information. Terms unique to overhead transmission line construction have been defined. Every effort has been made to plan and write a guide that will serve as a useful reference. Members of the Conductor Stringing Equipment Task Group were: ### J. W. Reilly, Chairman | H. W. Adams | R. Lemire | |----------------|----------------| | W. J. Bellerby | K. E. Lindsey | | C. B. Benham | W. H. McKinnon | | W. Caulkins | T. O'Teter | | D. H. Gilliam | J. B. Roche | | L. A. Gravel | H. E. Skelton | | K. L. Griffing | C. G. Sparrowe | | W. Howington | J. M. Van Name | | R. E. Larson | A. C. Verock | | | | # Contents | SECT | PA | AGE | |------|---|--| | 1. | Introduction 1.1 Scope 1.2 Purpose 1.3 Application | 7
7
7
7 | | 2. | Definitions and Cross Reference | 7
7
16 | | 3. | References | 18 | | 4. | Conductor Stringing Methods | 18
18
19 | | 5. | Grounding Equipment and Methods | 19
19
20
20
20
20 | | 6. | Communications | 21 | | 7. | Conductor Reels | 22
22
22 | | 8. | Special Requirements for Mobile Equipment 8.1 Reel Stand | 22
23
23
23
24
24 | | 9. | Travelers | 25
25
25
27
27
27
27
28
28
28 | | 10. | Typical Procedures for Stringing Operations 10.1 Pull, Tension, Anchor and Splicing Sites 10.2 Section Between Snub Structures 10.3 Conductor Splicing 10.4 Stringing Procedures 10.5 Sagging Procedures | 28
28
29
30
31
35 | | SECTION | PAGE | |--|---| | 10.6 Deadending Precautions 10.7 Clipping In 10.8 Damper Installation. 10.9 Spacer Installation. | 46
46 | | FIGURES | | | Fig 1 Running Ground Fig 2 Helicopter Installing Pilot Line. Fig 3 Recommended Bullwheel Dimensions Fig 4 Drum Type Puller. Fig 5 Pilot Line Winder Fig 6 Recommended Sheave Configuration. Fig 7 Bundle Conductor Traveler with Uplift Roller and Grounds Fig 8 Tension Site. Fig 9 Cradle Block System Fig 10 Composite for the Installation of Overhead Transmission Line Conductors Fig 11 Bullwheel Reeving for Right-Hand Lay Conductor. Fig 12 Birdcaging Fig 13 Example Application of Clipping Offsets Fig 14 Nomograph for Determining Level Span Equivalents of Nonlevel Spans Fig 15 Nomograph for Determining Control Factor for Conductor Sagging Fig 16 Conductor Sagging by Calculated Angle of Sight Fig 17 Conductor Sagging by Calculated Target Method Fig 18 Conductor Sagging by Horizontal Line of Sight Fig 19 Conductor Sagging for Checking Sag S Fig 20 Sagging Thermometer and Container | 23 23 24 24 24 26 27 29 29 33 34 34 36 37 38 39 40 41 | | TABLES | | | Table 1 Grounding Cable Capacities | | | Appendix A Travelers or Snub Structure Load Calculation | 49
51
52
53
55 | # IEEE Guide to the Installation of Overhead Transmission Line Conductors #### 1. Introduction - 1.1 Scope. This guide provides general recommendations for the selection of methods, equipment and tools that have been found practical for the stringing of overhead transmission line conductors and overhead groundwires. The guide also includes a comprehensive list of definitions for equipment and tools used in stringing and for stringing terms commonly employed. - 1.2 Purpose. The purpose of this guide is to present in one document sufficient details of present day methods, materials and equipment to outline the basic considerations necessary to maintain safe and adequate control of conductors during stringing operations. References are given in Section 3 for those desiring more detailed information. Because the terminology used for many hardware items and for many stringing terms varies from place to place, the list of definitions is included to provide correlation and clarification of the terms most commonly employed. - 1.3. Application. This guide is broad enough yet specific enough to be applicable to the stringing of overhead transmission conductors of all sizes. Since stringing practices for different projects will be strongly influenced by the magnitude and nature of each project and by local circumstances, alternate methods that have been successfully employed are presented. The practices that are described provide for continuous control of the conductor from the initial setup to the ready for service condition. Any legal requirements of national, state or local regulations must, of course, be observed. The approach used within this guide is first to describe in general terms the stringing methods most commonly employed, then the specific requirements of the various tools and equipment used. Finally, the application of the methods and equipment to the process of stringing is described. #### 2. Definitions and Cross Reference Terminology for equipment and procedures associated with the installation of overhead transmission line conductors varies widely throughout the utility industry. Therefore, the table of definitions (2.1) and cross reference (2.2) have been included to provide a correlation between the terminology used in this guide and industry synonyms. Note that the synonyms are terms commonly used, although many are not necessarily good usage and should not be taken as equivalents to the guide terminology. Many of the terms have additional meanings and usages which are defined in ANSI/IEEE Std 100-1977, Dictionary of Electrical and Electronics Terms. # 2.1 Definitions and Terminology for Conductor Stringing Equipment anchor. A device that serves as a reliable support to hold an object firmly in place. The term anchor is normally associated with cone, plate, screw or concrete anchors, but the terms snub, deadman and anchor log are usually associated with pole stubs or logs set or buried in the ground to serve as temporary anchors. The latter are often used at pull and tension sites. (See anchor log, ANSI/IEEE Std 100-1977.) Synonyms: anchor log, deadman, snub. angle, roll over. For tangent stringing, the sum of the vertical angles between the conductor and the horizontal on both sides of the traveler. Resultants of these angles must be considered when stringing through line angles. Under some stringing conditions, such as stringing large diameter conductor, excessive roll over angles can cause premature failure of a conductor splice if it is allowed to pass over the travelers. block. A device designed with one or more single sheaves, a wood or metal shell, and an attachment hook or shackle. When rope is reeved through two of these devices, the assembly is commonly referred to as a block and tackle. A set of 4s refers to a block and tackle arrangement utilizing two 4 inch double sheave blocks to obtain four load bearing lines. Similarly, a set of 5s or a set of 6s refers to the same number of load bearing lines obtained using two 5 inch or two 6 inch double sheave blocks, respectively. Synonyms: set of 4s, set of 5s, set of 6s. block, hold down. A device designed with one or more single groove sheaves to be placed on the conductor and used
as a means of holding it down. This device functions essentially as a traveler used in an inverted position. It is normally used in midspan to control conductor uplift caused by stringing tensions, or at splicing locations to control the conductor as it is allowed to rise after splicing is completed. Synonyms: hold down roller, hold down traveler, splice release block. block, snatch. A device normally designed with a single sheave, wood or metal shell and hook. One side of the shell usually opens to eliminate the need for threading of the line. Commonly used for lifting loads on a single line, or as a device to control the position or direction, or both, of a fall line or pulling line. Synonyms: Skookum, Washington, Western. boatswain's chair. A seat designed to be suspended on a line reeved through a block and attached to a pulling device to hoist a workman to an elevated position. Synonym: bosun's chair. bonded. The mechanical interconnection of conductive parts to maintain a common electrical potential. (See bonding, ANSI/IEEE Std 100-1977.) Synonym: connected. bucket. A device designed to be attached to the boom tip of a line truck, crane or aerial lift and support workmen in an elevated working position. It is normally constructed of fiberglass to reduce its physical weight, maintain strength and obtain good dielectric characteristics. Synonym: basket. bullwheel. A wheel incorporated as an integral part of a bullwheel puller or tensioner to generate pulling or braking tension on conductors or pulling lines, or both, through friction. A puller or tensioner normally has one or more pairs arranged in tandem incorporated in its design. The physical size of the wheels will vary for different designs, but 17 in (43 cm) face widths and diameters of 5 ft (150 cm) are common. The wheels are power driven or retarded and lined with single or multiple groove neoprene or urethane linings. Friction is accomplished by reeving the pulling line or conductor around the groove of each pair. bundle, two conductor, three conductor, four conductor, multiconductor. A circuit phase consisting of more than one conductor. Each conductor of the phase is referred to as a subconductor. A two conductor bundle has two subconductors per phase. These may be arranged in a vertical or horizontal configuration. Similarly, a three conductor bundle has three subconductors per phase. These are usually arranged in a triangular configuration with the vertex of the triangle up or down. A four conductor bundle has four subconductors per phase. These are normally arranged in a square configuration. Although other configurations are possible, those listed are the most common. Synonyms: twin-bundle, tri-bundle, quadbundle. cable car. A seat or basket shaped device designed to be suspended by a framework and two or more sheaves arranged in tandem to enable a workman to ride a single conductor, wire or cable. Synonym: cable trolley. clamp, cable. A device designed to clamp cables together. It consists of a *U* bolt threaded on both ends, two nuts and a base and is commonly used to make temporary *bend back* eyes on wire rope. Synonyms: clip, Crosby, Crosby clip. clamp, strand restraining. An adjustable circular clamp commonly used to keep the individual strands of a conductor in place and prevent them from spreading when the conductor is cut. Synonyms: cable binding block, hose clamp, vise grip plier clamp. clearance. (1) The condition where a circuit has been deenergized to enable work to be performed more safely. A clearance is normally obtained on a circuit presenting a source of hazard prior to starting work. Synonyms: outage, permit, restriction. (2) The minimum separation between two conductors, between conductors and supports or other objects, or between conductors and ground (ANSI/IEEE Std 100-1977), or the clear space between any objects. clipping-in. The transferring of sagged conductors from the travelers to their permanent suspension positions and the installing of the permanent suspension clamps. Synonyms: clamping-in, clipping. clipping offset. A calculated distance, measured along the conductor from the plumb mark to a point on the conductor at which the center of the suspension clamp is to be placed. When stringing in rough terrain, clipping offsets may be required to balance the horizontal forces on each suspension structure. conductor. A wire or combination of wires not insulated from one another, suitable for carrying an electric current. It may be, however, bare or insulated (ANSI/IEEE Std 100-1977). Synonyms: cable, wire. conductor car. A device designed to carry workmen and ride on sagged bundle conductors, thus enabling them to inspect the conductors for damage and install spacers and dampers where required. These devices may be manual or powered. Synonyms: cable buggy, cable car, spacer buggy, spacer cart. crossing structure. A structure built of poles and, sometimes, rope nets. It is used whenever conductors are being strung over roads, power lines, communications circuits, highways or railroads and normally constructed in such a way that it will prevent the conductor from falling onto or into any of these facilities in the event of equipment failure, broken pulling lines, loss of tension, etc. Synonyms: guard structure, H-frame, rider structure, temporary structure. deenergized. Free from any electric connection to a source of potential difference and from electric charge; not having a potential different from that of the ground. The term is used only with reference to current-carrying parts that are sometimes alive (energized). (See dead, ANSI/IEEE Std 100-1977.) To state that a circuit has been deenergized means that the circuit has been disconnected from all intended electrical sources. However, it could be electrically charged through induction from energized circuits in proximity to it, particularly if the circuits are parallel. Synonym: dead. dynamometer. A device designed to measure loads or tension on conductors. Various models of these devices are used to tension guys or sag conductors. Synonyms: clock, load cell. energized. Electrically connected to a source of potential difference, or electrically charged so as to have a potential different from that of the ground. (See alive, ANSI/IEEE Std 100-1977.) Synonyms: alive, current carrying, hot, live. equipotential. An identical state of electrical potential for two or more items. explosives. Mixtures of solids, liquids or a combination of the two which, upon detonation, transform almost instantaneously into other products which are mostly gaseous and which occupy much greater volume than the original mixtures. This transformation generates heat which rapidly expands the gases, causing them to exert enormous pressure. Dynamite and Primacord are explosives as manufactured. Aerex, Triex and Quadrex are manufactured in two components and are not true explosives until mixed. Explosives are commonly used to build construction roads, blast holes for anchors, structure footings, etc. Synonyms: Aerex, dynamite, fertilizer, powder, Primacord, Quadrex, Triex. grip, conductor. A device designed to permit the pulling of conductor without splicing on fittings, eyes, etc. It permits the pulling of a continuous conductor where threading is not possible. The designs of these grips vary considerably. Grips such as the Klein (Chicago) and Crescent utilize an open sided rigid body with opposing jaws and swing latch. In addition to pulling conductors, this type is commonly used to tension guys and, in some cases, pull wire rope. The design of the come-along (pocket-book, suitcase, four bolt, etc) incorporates a bail attached to the body of a clamp which folds to completely surround and envelope the conductor. Bolts are then used to close the clamp and obtain a grip. Synonyms: buffalo, Chicago grip, come-along, Crescent, four bolt, grip, Klein, pocketbook, seven bolt, six bolt, slip-grip, suitcase. grip, woven wire. A device designed to permit the temporary joining or pulling of conductors without the need of special eyes, links or grips. Synonyms: basket, chinese finger, Kellem, sock, wire mesh grip. grounded. Connected to earth or to some extended conducting body that serves instead of the earth, whether the connection is intentional or accidental (ANSI/IEEE Std 100-1977). ground grid. A system of interconnected bare conductors arranged in a pattern over a specified area and on or buried below the surface of the earth. Normally, it is bonded to ground rods driven around and within its perimeter to increase its grounding capabilities and provide convenient connection points for grounding devices. The primary purpose of the grid is to provide safety for workmen by limiting potential differences within its perimeter to safe levels in case of high currents which could flow if the circuit being worked became energized for any reason or if an adjacent energized circuit faulted. Metallic surface mats and gratings are sometimes utilized for this same purpose. When used, these grids are employed at pull, tension and midspan splice sites. (See counterpoise, ground grid, ground mat, ANSI/IEEE Std 100-1977.) Synonyms: counterpoise, ground gradient mat, ground ground, master. A portable device designed to short circuit and connect (bond) a deenergized circuit or piece of equipment, or both, to an electrical ground. Normally located remote from, and on both sides of, the immediate work site. Primarily used to provide safety for personnel during construction, reconstruction or maintenance operations. Synonyms: ground set, ground stick. ground, personal. A portable device designed to connect (bond) a deenergized conductor or piece of equipment, or both, to an electrical ground. Distinguished from a master ground in that it is utilized at the immediate site when work is to be performed on a conductor or piece of equipment which could accidentally become energized. Synonyms: ground stick, red head,
working ground. ground rod. A rod that is driven into the ground to serve as a ground terminal, such as a copper-clad rod, solid copper rod, galvanized iron rod or galvanized iron pipe (ANSI/IEEE Std 100-1977). Copper-clad steel rods are commonly used during conductor stringing operations to provide a means of obtaining an electrical ground using portable grounding devices. Synonym: ground electrode. ground, running. A portable device designed to connect a moving conductor or wire rope, or both, to an electrical ground. These devices are normally placed on the conductor or wire rope adjacent to the pulling and tensioning equipment located at either end of a sag section. Primarily used to provide safety for personnel during construction or reconstruction operations. Synonyms: ground roller, moving ground, rolling ground, traveling ground. ground, structure base. A portable device designed to connect (bond) a metal structure to an electrical ground. Primarily used to provide safety for personnel during construction, reconstruction or maintenance operations. Synonyms: butt ground, ground chain, structure ground, tower ground. ground, traveler. A portable device designed to connect a moving conductor or wire rope, or both, to an electrical ground. Primarily used to provide safety for personnel during construction or reconstruction operations. This device is placed on the traveler (sheave, block, etc) at a strategic location where an electrical ground is required. Synonyms: block ground, rolling ground, sheave ground. hoist. An apparatus for moving a load by the application of a pulling force and not including a car or platform running in guides (ANSI/IEEE Std 100-1977). These devices are normally designed using roller or link chain and built-in leverage to enable heavy loads to be lifted or pulled. They are often used to deadend a conductor during sagging and clipping-in operations and when tensioning guys. Synonyms: chain hoist, chain tugger, Coffing, Coffing hoist. hook, conductor lifting. A device resembling an open boxing glove designed to permit the lifting of conductors from a position above them. Normally used during clipping-in operations. Suspension clamps are sometimes used for this purpose. Synonyms: boxing glove, conductor hook, lifting shoe, lip. hub. A reference point established through a land survey. A hub or POT (point on tangent) is a reference point for use during construction of a line. The number of such points established will vary with the job requirements. Monuments, however, are usually associated with state or federal surveys and are intended to be permanent reference points. Any of these points may be used as a reference point for transit sagging operations, provided all necessary data pertaining to them is known. It is quite common to establish additional temporary hubs as required for this purpose. Synonyms: monument, POT. isolated. (1) Physically separated, electrically and mechanically, from all sources of electrical energy. Such separation may not eliminate the effects of electrical induction. (2) An object not readily accessible to persons unless special means for access are used (ANSI/IEEE Std 100-1977). joint, compression. A tubular compression fitting designed and fabricated from aluminum, copper or steel to join conductors or overhead ground wires. It is usually applied through the use of hydraulic or mechanical presses. However, in some cases, automatic, wedge, and explosive type joints are utilized. Synonyms: conductor splice, sleeve, splice. jumper. (1) The conductor that connects the conductors on opposite sides of a deadend structure. Synonym: deadend loop. (2) A conductor placed across the clear space between the ends of two conductors or metal pulling lines which are being spliced together. Its purpose then is to act as a shunt to prevent workmen from accidentally placing themselves in series between the two conductors ladder, rope. A ladder having vertical synthetic or manila suspension members and wood, fiberglass or metal rungs. The ladder is suspended from the arm or bridge of a structure to enable workmen to work at the conductor level, hang travelers, perform clipping-in operations, etc. Synonym: Jacobs ladder. ladder, tower. A ladder complete with hooks and safety chains attached to one end of the side rails. These units are normally fabricated from fiberglass, wood or metal. The ladder is suspended from the arm or bridge of a structure to enable workmen to work at the conductor level, to hang travelers, perform clipping-in operations, etc. In some cases, these ladders are also used as linemen's platforms. Synonym: hook ladder. leader cone. A tapered cone made of rubber, neoprene or polyurethane that is used to lead a conductor splice through the travelers, thus making a smooth transition from the smaller diameter conductor to the larger diameter splice. It is also used at the connection point of the pulling line and running board to assist in a smooth transition of the running board over the travelers, thus significantly reducing the shock loads. Synonyms: nose cone, tapered hose. lifter, insulator. A device designed to permit insulators to be lifted in a *string* to their intended position on a structure. Synonyms: insulator saddle, potty seat. line, bull. A high strength line, normally synthetic fiber rope, used for pulling and hoisting large loads. line, finger. A lightweight line, normally sisal, manila or synthetic fiber rope, which is placed over the traveler when it is hung. It usually extends from the ground, passes through the traveler and back to the ground. It is used to thread the end of the pilot line or pulling line over the traveler and eliminates the need for workmen on the structure. These lines are not required if pilot lines are installed when the travelers are hung. line, pilot. A lightweight line, normally synthetic fiber rope, used to pull heavier pulling lines which in turn are used to pull the conductor. Pilot lines may be installed with the aid of finger lines or by helicopter when the insulators and travelers are hung. Synonyms: lead line, leader, P-line, straw line. line, pulling. A high strength line, normally synthetic fiber rope or wire rope, used to pull the conductor. However, on reconstruction jobs where a conductor is being replaced, the old conductor often serves as the pulling line for the new conductor. In such cases, the old conductor must be closely examined for any damage prior to the pulling operations. Synonyms: bull line, hard line, light line, sock line. line, safety life. A safety device normally constructed from synthetic fiber rope and designed to be connected between a fixed object and the body belt of a workman working in an elevated position when his regular safety strap cannot be utilized. Synonyms: life line, safety line, scare rope. line, tag. A control line, normally manila or synthetic fiber rope, attached to a suspended load to enable a workman to control its movement. line, threading. A lightweight flexible line, normally manila or synthetic fiber rope, used to lead a conductor through the bullwheels of a tensioner or pulling line through a bullwheel puller. Synonym: bull line. link, connector. A rigid link designed to connect pulling lines and conductors together in series. It will not spin and relieve torsional forces. Synonyms: bullet, connector, link, slug. link, swivel. A swivel device designed to connect pulling lines and conductors together in series or connect one pulling line to the drawbar of a pulling vehicle. The device will spin and help relieve the torsional forces which build up in the line or conductor under tension. Synonym: swivel. load binder. A toggle device designed to secure loads in a desired position. Normally used to secure loads on mobile equipment. Synonyms: binder, chain binder. off road vehicle. A vehicle specifically designed and equipped to traverse sand, swamps, muddy tundra or rough mountainous terrain. Vehicles falling into this category are usually all wheel drive or tracked units. In some cases, units equipped with special air bag rollers having a soft footprint are utilized. Synonyms: all terrain vehicle (ATV), swamp buggy. overhead groundwire (lightning protection). Multiple grounded wire or wires placed above phase conductors for the purpose of intercepting direct strokes in order to protect the phase conductors from the direct strokes (ANSI/IEEE Std 100-1977). Synonyms: earth wire, shield wire, skywire, static wire. platform, aerial. A device designed to be attached to the boom tip of a crane or aerial lift and support a workman in an elevated working position. Platforms may be constructed with surrounding railings, fabricated from aluminum, steel or fiber reinforced plastic. Occasionally, a platform is suspended from the load line of a large crane. Synonyms: cage, platform. platform, lineman's. A device designed to be attached to a wood pole or metal structure, or both, to serve as a supporting surface for workmen engaged in deadending operations, clipping-in, insulator work, etc. The designs of these devices vary considerably. Some resemble short cantilever beams, others resemble swimming pool diving boards, and still others as long as 40 ft (12 m) are truss structures resembling bridges. Materials commonly used for fabrication are wood, fiberglass and metal. Synonyms: Baker board, D-board, deadend board, deadend platform, diving board. plumb mark. A mark placed on the conductor located vertically below the insulator point of support for steel structures and vertically above the pole center line at ground level for wood pole structures used as a reference to locate the center of the suspension clamp. pole, plumb marker. A small diameter, light-weight pole with a marking device attached to one end, having sufficient length to enable a workman to mark the conductor directly below him from a position on the bridge or arm of the structure. This device is utilized to
mark the conductor immediately after completion of sagging. Synonyms: marker, offset marker (pole). puller, bullwheel. A device designed to pull pulling lines and conductors during stringing operations. It normally incorporates one or more pairs of urethane- or neoprene-lined, power driven, single or multiple groove bullwheels where each pair is arranged in tandem. Pulling is accomplished by friction generated against the pulling line which is reeved around the grooves of a pair of the bullwheels. The puller is usually equipped with its own engine which drives the bullwheels mechanically, hydraulically or through a combination of both. Some of these devices function as either a puller or tensioner. Synonym: puller. puller, drum. A device designed to pull a conductor during stringing operations. It is normally equipped with its own engine which drives the drum mechanically, hydraulically or through a combination of both. It may be equipped with synthetic fiber rope or wire rope to be used as the pulling line. The pulling line is payed out from the unit, pulled through the travelers in the sag section and attached to the conductor. The conductor is then pulled in by winding the pulling line back onto the drum. This unit is sometimes used with synthetic fiber rope acting as a pilot line to pull heavier pulling lines across canyons, rivers, etc. Synonyms: hoist, single drum hoist, single drum winch, tugger. puller, two drum, three drum. The definition and application for this unit is essentially the same as that for the drum puller previously described. It differs in that this unit is equipped with three drums and thus can pull one, two or three conductors individually or simultaneously. Synonyms: two drum winch, double drum hoist, double drum winch, three drum winch, triple drum hoist, triple drum winch, tugger. puller, reel. A device designed to pull a conductor during stringing operations. It is normally equipped with its own engine which drives the supporting shaft for the reel mechanically, hydraulically or through a combination of both. The shaft, in turn, drives the reel. The application of this unit is essentially the same as that for the drum puller previously described. Some of these devices function as either a puller or tensioner. pulling vehicle. Any piece of mobile ground equipment capable of pulling pilot lines, pulling lines or conductors. However, helicopters may be considered as a pulling vehicle when utilized for the same purpose. rack, traveler. A device designed to protect, store and transport travelers. It is normally designed to permit efficient use of transporting vehicles, spotting by helicopters on the line, and stacking during storage to utilize space. The exact design of each rack is dependent upon the specific travelers to be stored. Synonym: dollie car. reel stand. A device designed to support one or more reels and having the possibility of being skid, trailer or truck mounted. These devices may accommodate rope or conductor reels of varying sizes and are usually equipped with reel brakes to prevent the reels from turning when pulling is stopped. They are used for either slack or tension stringing. The designation of reel trailer or reel truck implies that the trailer or truck has been equipped with a reel stand (jacks) and may serve as a reel transport or payout unit, or both, for stringing operations. Depending upon the sizes of the reels to be carried, the transporting vehicles may range from single axle trailers to semitrucks with trailers having multiple axles. Synonyms: reel trailer, reel transporter, reel truck. ruling span. A calculated deadend span length which will have the same changes in conductor tension due to changes of temperature and conductor loading as will be found in a series of spans of varying lengths between deadends. running board. A pulling device designed to permit stringing more than one conductor simultaneously with a single pulling line. For distribution stringing, it is usually made of lightweight tubing with the forward end curved gently upward to provide smooth transition over pole crossarm rollers. For transmission stringing, the device is either made of sections hinged transversely to the direction of pull or of a hard nose rigid design, both having a flexible pendulum tail suspended from the rear. This configuration stops the conductors from twisting together and permits smooth transition over the sheaves of bundle travelers. Synonyms: alligator, bird, birdie, monkey tail, sled. safety, conductor. A sling arranged in a vertical basket configuration, with both ends attached to the supporting structure and passed under the clipped-in conductor(s). These devices, when used, are normally utilized with bundled conductors to act as a safety device in case of insulator failure while workmen in conductor cars are installing spacers between the subconductors, or as an added safety measure when crossing above energized circuits. These devices may be fabricated from synthetic fiber rope or wire rope. sag section. The section of line between snub structures. More than one sag section may be required in order to sag properly the actual length of conductor which has been strung. Synonyms: pull, setting, stringing section. sag span. A span selected within a sag section and used as a control to determine the proper sag of the conductor, thus establishing the proper conductor level and tension. A minimum of two, but normally three, sag spans are required within a sag section in order to sag properly. In mountainous terrain or where span lengths vary radically, more than three sag spans could be required within a sag section. Synonym: control span. sheave. (1) The grooved wheel of a traveler or rigging block. Travelers are frequently referred to as sheaves. Synonyms: pulley, roller, wheel. (2) A shaft-mounted wheel used to transmit power by means of a belt, chain, band, etc (ANSI/IEEE Std 100-1977). site, pull. The location on the line where the puller, reel winder and anchors (snubs) are located. This site may also serve as the pull or tension site for the next sag section. Synonyms: reel setup, tugger setup. site, tension. The location on the line where the tensioner, reel stands and anchors (snubs) are located. This site may also serve as the pull or tension site for the next sag section. Synonyms: conductor payout station, payout site, reel setup. snub structure. A structure located at one end of a sag section and considered as a zero point for sagging and clipping offset calculations. The section of line between two such structures is the sag section, but more than one sag section may be required in order to sag properly the actual length of conductor which has been strung. Synonyms: 0 structure, zero structure. splice, wire rope. The point at which two wire ropes are joined together. The various methods of joining (splicing) wire ropes together include hand tucked woven splices, compression splices which utilize compression fittings but do not incorporate loops (eyes) in the ends of the ropes, and mechanical splices which are made through the use of loops (eyes) in the ends of the ropes held in place by either compression fittings or wire rope clips. The latter are joined together with connector links or steel bobs and, in some cases, rigged eye to eye. Woven splices are often classified as short or long. A short splice varies in length from 7 to 17 ft (2 to 5m) for ¼ to 1½ in diameter ropes, respectively, while a long splice varies from 15 to 45 ft (4 to 14m) for the same size ropes. splicing cart. A unit which is equipped with a hydraulic compressor (press) and all other necessary equipment for performing splicing operations on conductor. Synonyms: sleeving trailer, splicing truck. step voltage. The potential difference between two points on the earth's surface separated by a distance of one pace (assumed to be 1 m) in the direction of maximum potential gradient (ANSI/IEEE Std 100-1977). This potential difference could be dangerous when current flows through the earth or material upon which a workman is standing, particularly under fault conditions. Synonym: step potential. stringing. The pulling of pilot lines, pulling lines and conductors over travelers supported on structures of overhead transmission lines. Quite often, the entire job of stringing conductors is referred to as *stringing operations*, beginning with the planning phase and terminating after the conductors have been installed in the suspension clamps. stringing, slack. The method of stringing conductor slack without the use of a tensioner. The conductor is pulled off the reel by a pulling vehicle and dragged along the ground, or the reel is carried along the line on a vehicle and the conductor deposited on the ground. As the conductor is dragged to, or past, each supporting structure, the conductor is placed in the travelers, normally with the aid of finger lines. stringing, tension. The use of pullers and tensioners to keep the conductor under tension and positive control during the stringing phase, thus keeping it clear of the earth and other obstacles which could cause damage. switching surge. A transient wave of overvoltage in an electrical circuit caused by a switching operation. When this occurs, a momentary voltage surge could be induced in a circuit adjacent and parallel to the switched circuit in excess of the voltage induced normally during steady state conditions. If the adjacent circuit is under construction, switching operations should be minimized to reduce the possibility of hazards to the workmen. target, sag. A device used as a reference point to sag conductors. It is placed on one structure of the sag span. The sagger, on the other structure of the sag span, can use it as his reference to determine the proper conductor sag. Synonyms: sag board, target. tensioner, bullwheel. A device designed to hold tension against a pulling line or conductor during the stringing phase.
Normally, it consists of one or more pairs of urethane- or neoprenelined, power braked, single or multiple groove bullwheels where each pair is arranged in tandem. Tension is accomplished by friction generated against the conductor which is reeved around the grooves of a pair of the bullwheels. Some tensioners are equipped with their own engines which retard the bullwheels mechanically, hydraulically or through a combination of both. Some of these devices function as either a puller or tensioner. Other tensioners are only equipped with friction type retardation. Synonyms: retarder, tensioner. tensioner, reel. A device designed to generate tension against a pulling line or conductor during the stringing phase. Some are equipped with their own engines which retard the supporting shaft for the reel mechanically, hydraulically or through a combination of both. The shaft, in turn, retards the reel. Some of these devices function as either a puller or tensioner. Other tensioners are only equipped with friction type retardation. Synonyms: retarder, tensioner. touch voltage. The potential difference between a grounded metallic structure and a point on the earth's surface separated by a distance equal to the normal maximum horizontal reach, approximately 1 m (ANSI/IEEE Std 100-1977). This potential difference could be dangerous and could result from induction or fault conditions, or both. Synonym: touch potential. tractor, crawler. A tracked unit employed to pull pulling lines, sag conductor, level or clear pull and tension sites, and miscellaneous other work. It is also frequently used as a temporary anchor. Sagging winches on this unit are usually arranged in a vertical configuration. Synonyms: cat, crawler, tractor. tractor, wheel. A wheeled unit employed to pull pulling lines, sag conductor, and miscellaneous other work. Sagging winches on this unit are usually arranged in horizontal configuration. It has some advantages over crawler tractors in that it has a softer footprint, travels faster, and is more maneuverable. Synonyms: logger, sagger, skidder, tractor. transit. An instrument primarily used during construction of a line to survey the route, set hubs and POT locations, plumb structures, determine downstrain angles for locations of anchors at the pull and tension sites, and to sag conductors. Synonyms: level, scope, site marker. traveler. A sheave complete with suspension arm or frame used separately or in groups and suspended from structures to permit the stringing of conductors. These devices are sometimes bundled with a center drum, or sheave and another traveler, and used to string more than one conductor simultaneously. For protection of conductors that should not be nicked or scratched, the sheaves are often lined with nonconductive or semiconductive neoprene or with nonconductive urethane. Any one of these materials acts as a padding or cushion for the conductor as it passes over the sheave. Traveler grounds must be used with lined travelers in order to establish an electrical ground. Synonyms: block, dolly, sheave, stringing block, stringing sheave, stringing traveler. traveler sling. A sling of wire rope, sometimes utilized in place of insulators, to support the traveler during stringing operations. Normally, it is used when insulators are not readily available or when adverse stringing conditions might impose severe downstrains and cause damage or complete failure of the insulators. Synonym: choker. uplift roller. A small single-grooved wheel designed to fit in or immediately above the throat of the traveler and keep the pulling line in the traveler groove when uplift occurs due to stringing tensions. winder, pilot line. A device designed to payout and rewind pilot lines during stringing operations. It is normally equipped with its own engine which drives a drum or a supporting Synonyms Guide **Terminology** shaft for a reel mechanically, hydraulically or through a combination of both. These units are usually equipped with multiple drums or reels, depending upon the number of pilot lines required. The pilot line is payed out from the drum or reel, pulled through the travelers in the sag section, and attached to the pulling line on the reel stand or drum puller. It is then rewound to pull the pulling line through the travelers. winder, reel. A device designed to serve as a recovery unit for a pulling line. It is normally equipped with its own engine which drives a supporting shaft for a reel mechanically, hydraulically or through a combination of both. The shaft, in turn, drives the reel. It is normally used to rewind a pulling line as it leaves the bullwheel puller during stringing operations. This unit is not intended to serve as a puller, but sometimes serves this function where only low tensions are involved. Synonym: takeup reel. #### 2.2 Cross Reference | 2.2 Closs iteratence | | |----------------------|---------------------------| | Synonyms | Guide
Terminology | | Synonyms | Terminology | | Aerex | explosives | | alive | energized | | alligator | running board | | all terrain vehicle | | | (ATV) | off road vehicle | | anchor log | anchor | | Baker board | platform, lineman's | | basket | bucket | | basket | grip, woven wire | | binder | load binder | | bird | running board | | birdie | running board | | block | traveler | | block ground | ground, traveler | | bosun's chair | boatswain's chair | | boxing glove | hook, conductor lifting | | buffalo | grip, conductor | | bullet | link, connector | | bull line | line, pulling | | bull line | line, threading | | butt ground | ground, structure base | | cable | conductor | | cable binding block | clamp, strand restraining | | cable buggy | conductor car | | cable car | conductor car | | cable trolley | cable car | | | | | Synonymis | 1011111101083 | |---------------------|-------------------------| | cage | platform, aerial | | cat | tractor, crawler | | chain binder | load binder | | chain hoist | hoist | | chain tugger | hoist | | Chicago grip | grip, conductor | | chinese finger | grip, woven wire | | choker | traveler sling | | clamping-in | clipping-in | | clip | clamp, cable | | clipping | clipping-in | | clock | dynamometer | | Coffing | hoist | | Coffing hoist | hoist | | come-along | grip, conductor | | conductor hook | hook, conductor lifting | | conductor payout | site, tension | | station | _ | | conductor splice | joint, compression | | connected | bonded | | connector | link, connector | | control span | sag span | | counterpoise | ground grid | | crawler | tractor, crawler | | Crescent | grip, conductor | | Crosby | clamp, cable | | Crosby clip | clamp, cable | | current carrying | energized | | D-board | platform, lineman's | | dead | deenergized | | deadend board | platform, lineman's | | deadend loop | jumper | | deadend platform | platform, lineman's | | deadman | anchor | | diving board | platform, lineman's | | dollie car | rack, traveler | | dolly | traveler | | double drum hoist | puller, two drum | | double drum winch | puller, two drum | | dynamite | explosives | | earthwire | overhead groundwire | | fertilizer | explosives | | four bolt | grip, conductor | | grip | grip, conductor | | ground chain | ground, structure base | | ground electrode | ground rod | | ground gradient mat | ground grid | | ground mat | ground grid | | ground roller | ground, running | | ground set | ground, master | | ground stick | ground, master | | | Guide | | Guide | |------------------------|--------------------------------|--|---------------------------------| | Synonyms | Terminology | Synonyms | Terminology | | ground stick | ground, personal | reel transporter | reel stand | | guard structure | crossing structure | reel truck | reel stand | | H-frame | crossing structure | restriction | clearance | | hard line | line, pulling | retarder | tensioner, bullwheel | | hold down roller | block, hold down | retarder | tensioner, reel | | hold down traveler | block, hold down | rider structure | crossing structure | | hoist | puller, drum | roller | sheave | | hook ladder | ladder, tower | rolling ground | ground, running | | hose clamp | clamp, strand restraining | rolling ground | ground, traveler | | hot | energized | safety line | line, safety life | | insulator saddle | lifter, insulator | sag board | target, sag | | Jacobs ladder | ladder, rope | sagger | tractor, wheel | | kellem | grip, woven wire | scare rope | line, safety life | | Klein | grip, conductor | scope | transit | | lead line | line, pilot | set of 4s | block | | leader | line, pilot | set of 5s | block | | level | transit | set of 6s | block | | life line | line, safety life | setting | sag section | | lifting shoe | hook, conductor lifting | seven bolt | grip, conductor | | light line | line, pulling | sheave | traveler | | link | link, connector | sheave ground | ground, traveler | | lip | hook, conductor lifting | shield wire | overhead groundwire | | live | energized | single drum hoist | puller, drum | | load cell | dynamometer | single drum winch | puller, drum | | logger | tractor, wheel | site marker | transit | | marker | pole, plumb marker | six bolt | grip, conductor | | monkey tail | running board | skidder | tractor, wheel | | monument | hub | Skookum | block, snatch | | moving ground | ground, running | skywire | overhead groundwire | | nose cone | leader cone | sled | running board | | O structure | snub structure | sleeve | joint, compression | | offset marker (pole) | pole, plumb marker | sleeving trailer | splicing cart | | outage | clearance | slip grip | grip, conductor | | P-line | line, pilot | slug | link, connector | | payout site | site, tension | snub | anchor | | permit | clearance | sock | grip, woven wire | | platform | platform, aerial | sock line | line, pulling | | pocketbook | grip, conductor | spacer buggy | conductor car | | POT | hub | spacer cart | conductor car | | potty seat | lifter, insulator |
splice | joint, compression | | powder | explosives | splice release block | block, hold down | | Primacord | explosives | splicing trailer | splicing cart
splicing cart | | pull | sag section | splicing truck
static wire | overhead groundwire | | puller | puller, bullwheel | step potential | step voltage | | pulley | sheave | straw line | | | quad-bundle | bundle, four conductor | | line, pilot | | Quadrex
red head | explosives
ground, personal | structure ground
stringing block | ground, structure base traveler | | red nead
reel setup | site, pull | stringing section | | | reel setup | site, pun
site, tension | stringing section
stringing sheave | sag section
traveler | | reel trailer | reel stand | stringing sneave
stringing traveler | traveler
traveler | | rest statist | icoi suaiiu | eminismis maveier | PIGACICI | ## Guide Synonyms Terminology grip, conductor suitcase off road vehicle swamp buggy link, swivel swivel winder, reel takeup reel target, sag target tapered hose leader cone temporary structure crossing structure tensioner, bullwheel tensioner tensioner, reel tensioner puller, three drum three drum winch touch potential touch voltage ground, structure base tower ground tractor, wheel tractor tractor, crawler tractor ground, running traveling ground bundle, three conductor tri-bundle explosives Triex puller, three drum triple drum hoist triple drum winch puller, three drum puller, three drum tugger puller, drum tugger site, pull tugger setup twin-bundle bundle, two conductor two drum winch puller, two drum Vise Grip plier clamp clamp, strand restraining Washington block, snatch Western block, snatch sheave wheel conductor wire grip, woven wire wire mesh grip ground, personal working ground snub structure zero structure ## 3. References - [1] Grounding and Jumpering. A. B. Chance Co, Bulletin 9-7208, 1972. - [2] HELLSTERN, V. and VAN NAME, J.M. A Study of Effective Temporary Grounding Techniques for Modern Transmission Lines. EEI Pub No 62-49. - [3] WAGNER, C. F. and LLOYD, B. L. Corona Effects on Traveling Waves Determined by Field and Laboratory Tests. *Proceedings, International Conference on Large Electric High-Voltage Systems (CIGRE)*, Paper No 408, 1956. - [4] CLAYTON, J. M. and POWELL, R. L. Application of Arresters for Complete Light- - ning Protection of Substations. AIEE Transactions, vol 77, Part 3, 1958. - [5] Live Line Maintenance Methods. *IEEE Towers*, Poles and Conductors Subcommittee of the *IEEE Transmission and Distribution Committee*, T73 157-5. - [6] BONER, C. J. Manufacture and Application of Lubricating Greases. Robert E. Krieger Publishing Co Inc., 1971 - [7] LUMMIS, J. and FISCHER, H. D., Jr. Practical Application of Sag and Tension Calculations to Transmission Line Design. AIEE 54-501, June 1955. - [8] WINKELMAN, P. F. Sag-Tension Computations and Field Measurements of Bonneville Power Administration, AIEE 59-900, 1959. - [9] Limitations on Stringing and Sagging Conductors. Working Group of the IEEE Towers, Poles and Conductors Subcommittee of the IEEE Transmission and Distribution Committee, TP64-146. ## 4. Conductor Stringing Methods Conductor (including overhead groundwire) stringing systems currently employed in the power industry are almost as numerous as the organizations that string conductors. Outlined below are the basic methods currently in use, but they are invariably modified to accommodate equipment readily available and the ideas and philosophies of the responsible supervision. In addition to a description of the various methods being used are comments relative to application and a listing of equipment applicable to each method. This list is not all inclusive since, for example, a reel winder would not be necessary as a separate piece of equipment if this function is designed into the puller or tensioner being used, or a loader would not be required if the reel stand were self-loading. 4.1 Slack or Layout Method. Using this method, the conductor is dragged along the ground by means of a pulling vehicle or the reel carried along the line on a vehicle and the conductor deposited on the ground. The conductor reels are positioned on reel stands or jacks, either placed on the ground or mounted on a transporting vehicle. These stands are designed to support the reel on an arbor, permitting it to turn as the conductor is pulled out. Usually a braking device is provided to prevent overrunning and backlash. When the conductor is dragged past a supporting structure, pulling is stopped and the conductor placed in travelers attached to the structure before proceeding to the next structure. This method is chiefly applicable to the construction of new lines in cases where maintenance of conductor surface condition is not critical and where terrain is easily accessible to a pulling vehicle. The method is not usually economically applicable in urban locations where hazards exist from traffic or where there is danger of contact with energized circuits, nor is it practical in mountainous regions inaccessible to pulling vehicles. Major equipment required to perform slack stringing includes reel stands, pulling vehicle(s) and a splicing cart. 4.2 Tension Method. Using this method, the conductor is kept under tension during the stringing process. Normally, this method is used to keep the conductor clear of the ground and obstacles which might cause conductor surface damage and clear of energized circuits. It requires the pulling of a light pilot line into the travelers, which in turn is used to pull in a heavier pulling line. The pulling line is then used to pull in the conductors from the reel stands using specially designed tensioners and pullers. For lighter conductors, a lightweight pulling line may be used in place of the pilot line to directly pull in the conductor. A helicopter or ground vehicle can be used to pull or lay out a pilot line or pulling line. Where a helicopter is used to pull out a line, synthetic rope is normally used to attach the line to the helicopter and prevent the pulling or pilot line from flipping into the rotor blades upon release. The tension method of stringing is applicable where it is desired to keep the conductor off the ground to minimize surface damage or in areas where frequent crossings are encountered. The amount of right of way travel by heavy equipment is also reduced. Usually, this method provides the most economical means of stringing conductor. The helicopter use is particularly advantageous in rugged or poorly accessible terrain. Major equipment required for tension stringing includes reel stands, tensioner, puller, reel winder, pilot line winder, splicing cart and helicopter or pulling vehicle. ## 5. Grounding Equipment and Methods 5.1 Introduction. For any given situation, the bonding together of all equipment and electrical grounds in a common array is of major importance. However, such bonding offers no assurance that a hazardous potential will not exist between the bonded items and the earth. It is impractical to design a grounding system precisely around available fault currents or calculated effects. Such a design would require precise knowledge of many variables and result in a different grounding scheme for each location. The degree of grounding protection required for a given construction project is dependent upon the exposure to electrical hazards which exist within the project area. For a project remote from other lines and at a time of low probable thunderstorm activity, minimal grounding requirements are in order. Minimum grounding requirements include bonding and grounding of all machines involved in stringing of the conductor, pulling line or pilot line. In addition, running grounds should be installed on all conductive lines in front of the pulling and tensioning equipment. On the contrary, for a project in a congested area with exposure to numerous parallel lines and crossing situations, and with probability of thunderstorm activity and adverse weather conditions, extensive grounding requirements are called for. Historically, the most significant hazard results from work in proximity to energized lines. Specific procedures for grounding are discussed in Section 10. Under any circumstance, in addition to open jumpers, grounding and other protective measures must be employed to ensure reasonable and adequate protection to all personnel. In addition to the grounding system, the best safety precaution is to respect all equipment as if it could become energized. The degree of protection provided for a specific project must be a decision of project supervision based on a clear understanding of the potential hazards [1], [2]. ¹ Numbers in brackets correspond to those in the References, Section 3 of this guide. Fig 1 Running Ground - **5.2** Source of Hazards. Electrical charges may appear on a line due to one or a combination of the following factors: - (1) Charges induced on the line by a neighboring energized line - (2) A fault caused by an accidental contact or flashover between the line and a neighboring energized line - (3) Induced static charge due to atmospheric conditions - (4) An error in which the line is accidentally energized - (5) A lightning strike to the line [3], [4] - 5.3 Protection of Personnel. The means of providing personnel protection may take several forms. These may include the insulation or isolation of the workmen, provision of an equipotential zone around the workmen, or provision of a low resistance path to ground for induced charges or fault currents. The insulation or isolation of workmen is usually not a practical approach for construction work other than on energized lines with bare hand work procedures and will therefore not be further discussed [5]. The primary method of personnel protection is the establishment of equipotential work zones to limit touch and step voltages to a safe level. This may be accomplished by the proper use of low resistance shunts
and grounding devices. Low resistance paths to ground are employed to limit the differences in potential between the various pieces of equipment, structures and individual work zones. Despite grounding precautions, the best protection is to respect all equipment as if it could become energized. 5.4 Grounding Devices. All grounding devices must be sized to carry the largest fault current likely to be encountered for a time period long enough to allow the line protection system to operate. Grounding devices include personal grounds, master grounds, structure base grounds, running grounds, traveler grounds, ground grids and ground rods. Figure 1 shows a typical transmission type running ground. The clamps selected for grounding cables should be of high quality and have a fault current capability equal to the cable. They should be capable of clamping positively on the object being grounded, as distinct from being spring loaded only. Table 1 is a listing of common grounding cable sizes with their fault carrying capabilities. Note that cables larger than 2/0 become heavy and might be difficult to handle, but may be necessary for high fault current values. #### 5.5 Grounding System Considerations 5.5.1 Care of the Grounding Equipment. Most grounding sticks are made of fiber-reinforced plastic and should be protected Table 1 Grounding Cable Capacities* | Cable Size | Fault Time | rms Amperes | | | | |------------|------------|-------------|----------|--|--| | AWG | Cycles | Copper | Aluminum | | | | | 15 | 10 500 | 6 500 | | | | 2 | 30 | 7 500 | 4 600 | | | | | 60 | 5 300 | 3 200 | | | | | 15 | 16 500 | 10 500 | | | | 1/0 | 30 | 11 500 | 7 500 | | | | -,- | 60 | 8 000 | 5 300 | | | | | 15 | 21 000 | 13 000 | | | | 2/0 | 30 | 15 000 | 9 000 | | | | _, - | 60 | 10 000 | 6 500 | | | | | 15 | 26 500 | 16 500 | | | | 3/0 | 30 | 18500 | 11 500 | | | | -, - | 60 | 13 000 | 8 000 | | | | | 15 | 30 000 | 21 000 | | | | 4/0 | 30 | 21 000 | 15 000 | | | | - , - | 60 | 15 000 | 10 000 | | | | | 15 | 35 000 | 25 000 | | | | 250 kcmil | 30 | 25 000 | 17 500 | | | *Based on 30°C ambient and a total temperature of 175°C established by ICEA for short circuit characteristic calculations for power cables. Values are approximately 57½% of fusing current for nominal lengths (<30 ft, 10m). Higher values may be used based on tests. Cables should be regularly inspected. See 5.5, Grounding System Considerations. from physical damage and properly stored when not in use. Each stick must be inspected each time before use and wiped clean with a dry rag. Inspection should be made prior to use for loose or dirty connections, broken wire strands and seized clamps. Some damaged sticks can be reconditioned. Rubber gloves should not be worn when using grounding sticks. 5.5.2 Grounding Conditions. Adverse grounding conditions (high electrical resistance) will exist in areas of dry sand or gravel and rock. In sand or gravel, rods with extensions, or a cluster of two or more rods bonded together by grounding cables, may be used as a ground source for portable grounding equipment. In rock, a rod or cluster may be employed at the best site within a reasonable distance. Driven grounds are frequently restricted in their capability to effectively limit potential buildup, particularly if high currents are encountered. Block and running grounds may also be limited by the ground source to which they are connected. In addition to the grounding system, the best protection is provided by treating all devices and equipment as if they are energized. At the same time, the various grounding means should be used to ensure, as far as possible, that the devices and equipment are at an equipotential as near ground potential as possible. The effectiveness of various available ground sources will vary. These sources would include station ground grids, grounded primary circuit neutrals, grounded towers, anchor rods and ground rods. The preferred source must be determined for a particular system or area. Guy wires should not be used as a ground source. 5.5.3 Cleaning of Connections. Since the value of the grounding system depends on a low resistance path, all surfaces to which a grounding clamp is to be applied must be cleaned to ensure proper contact. The use of grub screws in some clamps may reduce the contact area of the clamp and reduce grounding effectiveness. 5.5.4 Ground Application. Grounding cables must be connected to the ground source first, then to the object being grounded. When removing grounds, the ground must be removed from the grounded object first and then from the ground source. The object being grounded should not be teased with the ground clamp. The clamp must be poised by the object, snapped on quickly and firmly, and tightened. If an arc is drawn, the clamp should not be withdrawn, but kept on the conductor, thus grounding the line. 5.5.5 Ground Grid Application. Where ground grids are deemed necessary, adequate measures must be utilized to ensure effective contact with the earth. This may be accomplished by burying the grid conductors or placing metallic grid mats on the ground surface and through the use of ground rods. All grid conductors and ground rods must be interconnected and all equipment, structures, anchors, metallic pulling lines, conductors and overhead groundwires within the area must be bonded to the grid. The area of the grid must be sufficient to enable all equipment to be placed and all work performed within its perimeter. In some instances, particularly in urban situations, it may be desirable to install temporary barriers to restrict access to the grid area. #### 6. Communications Slack stringing requires a minimum of communications. It is desirable to have communication between the pulling vehicle and the personnel at the reel location. Tension stringing requires good communications between the personnel at the tensioner end and those at the puller end and at intermediate check points at all times during the stringing operation. During the stringing of bundled conductors with a running board, it is desirable to observe the running board as it passes through each traveler. The running board observer(s) should have reliable communications with both pulling and tensioning ends. When following the board from the ground is not practical, this can be accomplished with the aid of helicopters. During helicopter stringing of the pilot line, overhead groundwire or conductor, reliable radio contact with all ground work sites is extremely important. Dual systems of communication, particularly during the actual stringing operation, should be available in case one system fails. #### 7. Conductor Reels 7.1 Reel Types. Reels are supplied by the conductor (or groundwire) manufacturer and can either be of the nonreturnable wooden (NR) or the metal returnable (RM, RMT) type. Table 2 shows the standard reel sizes and nominal dimensions as published by the Aluminum Association, including supplementary footnotes. Gross weight and type of reel can be obtained from the conductor manufacturer. 7.2 Reel Handling. The type and construction of the reel stand used and the type of reel determine the method and tools for handling. Reels are so constructed that they must be supported either on an axle through the arbor hole or by the reel flange. Returnable metal reels may be supported by a single-tree arrangement that clamps to the flange and is lifted from above. When the reels are lifted by an axle supported from above, a spreader bar must be employed to prevent damage to the conductor or reel, or both, by inward pressure on the reel flange. Proper equipment must be available to lift the reels. # 8. Special Requirements for Mobile Equipment 8.1 Reel Stand. Reel stands are designed to be used with tensioners to supply the necessary back pressure to the conductor. The Table 2 Dimensions of Standard Reels | | | | | | | | NOMINA | L REE | L DIMEN | SIONS | | | | |----------|-----------|-----------------|---------|---------|-------------|----|--------|-------|---------|-------|--------|--------|------------------| | ALUN | MINUM | TOT | AL | | | | | | WID | TH | | | | | | CIATION | REI | | | ANGE | | RUM | 15.7 | CIDE | OL 17 | SIDE | | OR HOLE
METER | | REEL DES | SIGNATION | VOLU | | | METER | | METER | | SIDE | | | in | | | | | in ³ | (m³) | in | (m) | in | (m) | in | (m) | in | (m) | ın | (mm) | | NR | 30.22 | 11 100 | (.182) | 30 | (.76) | 16 | (.41) | 22 | (.56) | 25 | (.64) | 3-31/4 | (76-83) | | NR | 36.22 | 16 800 | (.275) | 36 | (.91) | 18 | (.46) | 22 | (.56) | 25 | (.64) | 3-31/4 | (76-83) | | NR | 38.22 | 18 000 | (.295) | 38 | (.97) | 20 | (.51) | 22 | (.56) | 25 | (.64) | 3-31/4 | (76-83) | | NR | 42.28 | 29 100 | (.477) | 42 | (1.07) | 21 | (.53) | 28 | (.71) | 321/2 | (.83) | 3-31/4 | (76-83) | | NR | 48.28 | 38 000 | (.623) | 48 | (1.22) | 24 | (.61) | 28 | (.71) | 321/2 | (.83) | 3-31/4 | (76-83) | | NR | 60.28 | 61 900 | (1.014) | 60 | (1.52) | 28 | (.71) | 28 | (.71) | 321/2 | (.83) | 3-31/4 | (76-83) | | NR | 66.28 | 76 000 | (1.245) | 66 | (1.68) | 30 | (.76) | 28 | (.71) | 321/2 | (.83) | 3-31/4 | (76-83) | | RM | 66.32 | 76 900 | (1.260) | 66 | (1.68) | 36 | (.91) | 32 | (.81) | 38 | (.97) | 3-31/4 | (76-83) | | RM | 68.38 | 99-300 | (1.627) | 68 | (1.73) | 36 | (.91) | 38 | (.97) | 44 | (1.12) | 3-31/4 | (76-83) | | RMT | 84.36 | 122 100 | (2.001) | 78-84 | (1.98-2.13) | 42 | (1.07) | 36 | (.91) | 43 | (1.09) | 5-51/4 | (127-133) | | RMT | 84.45 | 152 700 | (2.502) | 78-84 | (1.98-2.13) | 42 | (1.07) | 45 | (1.14) | 52 | (1.32) | 5-514 | (127-133) | | RMT | 90.45 | 187 000 | (3.064) | 84-90 | (2.13-2.29) | 42 | (1.07) | 45 | (1.14) | 52 | (1.32) | 5-51/4 | (127-133) | | RMT | 96.60 | 298 600 | (4.893) | 90-96 | (2.29-2.44) | 42 | (1.07) | 60 | (1.52) | 67 | (1.70) | 5-51/4 | (127-133) | | RMT | 108.74 | 422 400 | (6.922) | 102-108 | (2.59-2.74) | 56 | (1.42) | 74 | (1.88) | 831/2 | (2.12) | 5-51/4 | (127-133) | ⁽¹⁾ Prefix NR denotes
wooden nonreturnable reel, RM metal returnable reel and RMT metal returnable reel with I- (2) Reels RM 66.32 and RM 68.38 have flat rims. (5) Hub reinforcements will be provided for reels NR 60.28 and NR 66.28. 6) Reels are not designed to withstand the forces required for braking during tension stringing operations. (9) Total reel volume is the volume to the edge of the flange for NR and RM reels and to inside edge of *I*-beam for RMT reels. ⁽³⁾ Reels RMT 84.36, RMT 84.45, RMT 90.45, RMT 96.60 and RMT 108.74 have 3 in *I*-beam tires. Reels with similar dimensions except without *I*-beam tires are sometimes used. ⁽⁴⁾ Pay off equipment for reels NR 48.28 and smaller should be a minimum of 2 in wider than the nominal outside reel width to provide for extension of bolts and for possible flange distortion. For reels NR 60.28 and larger, either wood or metal, pay off equipment should be not less than 4 in wider than the reel width. ⁽⁷⁾ Where NR and RM reels are shown as alternatives, RM reels are preferred for more reliable conductor protection. (8) The RMT 108.74 reel is not employed for any packages included in these standards. It is listed in this table, however, because it may be used for large sizes of conductors which may be added in the future. stand(s) are selected to accommodate the conductor (or groundwire) reel dimensions and gross weight. Some reels are not designed to withstand the forces developed by braking during tension stringing operations. Direct tension stringing from the reel at transmission line stringing tensions should not be attempted. Conductor may be pulled directly from the reel stand when employing slack stringing methods. If the reel stand is not self-loading, a crane, forklift or other suitable equipment is used to load the reel into the stand. 8.2 Helicopter. When pulling lines with a helicopter (see Fig 2) advantage in control and pulling capacity has been achieved with use of special attachment devices which permit Fig 2 Helicopter Installing Pilot Line pulling from the side of the aircraft at a point near the center of gravity. These devices allow Fig 3 Recommended Bullwheel Dimensions # LEGEND Db BULLWHEEL BOTTOM OF GROOVE DIAMETER Dc CONDUCTOR DIAMETER Dg GROOVE DEPTH Ra GROOVE RADIUS | LAYERS OF | GROOVE | RADIUS | |-------------------------|----------|----------| | ALUM. WIRES * | MIN. | MAX. | | 1, 2 | 0.525 Dc | 1.100 Dc | | 3 | 0.525 Dc | 0.750Dc | | 4 OR MORE
8 EXPANDED | 0.525 Dc | 0.625Dc | * THE 7 CENTRAL WIRES OF ALL ALUMINUM CONDUCTORS ARE CONSIDERED THE CORE. Fig 4 Drum Type Puller Fig 5 Pilot Line Winder pulling of loads while maintaining normal operating attitude of the aircraft, thus increasing pulling capacity. The devices are equipped with quick release mechanisms and are subject to FAA approval. Braided or other nonrotating synthetic rope should be used to connect the line being pulled to the release mechanisms. 8.3 Conductor Bullwheel Characteristics. The depth $(D_{\rm g})$ and flare of grooves in the bullwheels are not critical. Semicircular grooves with depths in the order of 0.5 or more times the conductor diameter and with flare angles the order of 5° to 15° from the vertical have generally been found to be satisfactory. The number of grooves in the bullwheel must be sufficient to prevent the outer layer of wires of multilayer conductors from slipping over underlying layers. The minimum diameter of the bottom of the grooves (D_b) should be in accordance with Fig 3. Tandem bullwheels should be so aligned that the offset will be approximately one-half the groove spacing. For normal conductors having a right hand direction of lay for the outer wires, bullwheels should be arranged so that when facing in the direction of pull, the conductor will enter the bullwheel on the left and pull off from the right side. For any conductors having a left hand direction of lay for the outer wires, the conductor should enter on the right and pull off from the left. This arrangement is necessary to avoid any tendency to loosen the outer layer of strands as the conductor passes over the bullwheels. See Section 10.4.2, Fig 11. The material and finish of the grooves must be such as not to mar the surface of the conductor. Elastomer lined grooves are recommended for all conductors, but are particularly important for nonspecular conductors. Should a semiconducting elastomer be used for lining the grooves, it should not be relied upon for grounding. Difficulties have been experienced with single v-groove type bullwheels on some multilayer and special construction conductors. These types of bullwheels should only be used with the concurrence of the conductor manufacturer. 8.4 Puller and Tensioner Operating Characteristics. The pulling and braking systems should operate smoothly and should not cause any sudden jerking or bouncing of the conductor. Each system should be readily controllable and capable of maintaining a constant tension. Pullers and tensioners may be mounted separately, or in groups, for bundled conductor installation. Separately mounted tensioners for bundled conductors should have central control so as to maintain uniform conductor stress history. The controls should allow the independent adjustment of tension in each conductor. This is particularly vital when stringing bundled conductor. Pullers and tensioners should be equipped with tension indicating and limiting devices. Capacity selection of the puller and tensioner is dependent upon conductor weight and length to be strung and the stringing tensions. Tensioner bullwheels must be retarded so that conductor tension may be maintained at various pulling speeds. Positive braking systems are required for pullers and tensioners to maintain conductor tension when pulling is stopped. Failsafe type braking systems are recommended. There are basically two types of pulling machines used in the construction of transmission lines being strung under tension. These are defined as bullwheel and drum or reel type pullers. See Fig 4 which shows a drum type puller. Some drum or reel type pullers are available with level wind features to provide uniform winding of the line. Some drum type and all reel type pullers provide easy removal of the drum (or reel) and line to facilitate highway mobility. This feature also provides the advantage of interchangability of drums. The control of payout tension of the pulling line is a desirable feature of many pullers. Mobility of the pullers and tensioners is important to minimize down time between pulls. Also critical are the setup and leveling features of the units. The overhead groundwire tensioner is normally a separate unit from the conductor tensioner, as the requirements are independent of each other. 8.5 Pilot Line Winder Operating Characteristics. Pilot line winders have operating characteristics similar to drum type pullers. They usually have multiple drums to provide pilot lines for several phase or groundwire positions, or both. See Fig 5. These units normally have capability for high speed operation. Retardation of the drum(s) is desirable in order to provide controlled payout of the pilot lines. These units are frequently employed to directly pull in overhead groundwire. #### 9. Travelers - 9.1 Sheave Diameter. It is generally recognized that as diameters are made larger, the following advantages are gained. - (1) The radius of bending of the conductor is increased, so the amount of strain and the amount of relative movement between individual wires in the conductor are reduced. This, in turn, reduces the amount of energy required - to bend and straighten the conductor as it passes through the travelers. The force and energy required for such bending and straightening retards the passage of the conductor in much the same way as friction in the bearings of the travelers. - (2) The bearing pressures between conductor strand layers are reduced, thus reducing potential conductor internal strand damage. This is commonly known as strand notching. - (3) The force required to overcome friction in the bearings is reduced because of the greater moment arm for turning. - (4) The number of rotations and speed of rotation is reduced, so wear on the bearings and grooves is alleviated. - (5) The obvious disadvantages of larger sheaves are cost and added weight. The minimum sheave diameter (D_s) at the bottom of the groove as shown in Fig 6 should be satisfactory for typical conductor stringing operations. However, for stringing conductors in excess of approximately 2 miles or over substantially uneven terrain, the recommended minimum bottom groove diameter of sheaves is $[20D_c - 4]$ in $([20D_c - 10]$ cm) or larger, where D_c stands for conductor diameter. In exceptionally arduous circumstances, accurate sagging may sometimes be very difficult with sheaves having diameters of less than $19D_c$ or $20D_c$. 9.2 Configuration of Groove. The minimum radius at the base of the groove (R_g) is recommended to be 1.10 times the radius of the conductor as shown in Fig 6. Sheaves having a groove radius as discussed above may, with limitations, be used with smaller conductors. The limitations relate to the number of layers of aluminum wires in the conductor. The more layers of aluminum wires, the more important it is to support the conductor with a well fitting groove. The depth of groove (D_g) should be a minimum of 25% greater than the diameter of the conductor. The sides of the groove should flare between 15° and 20° from the vertical to facilitate the passage of swivels, grips, etc, and to contain the conductor within the groove, particularly at line angles. 9.3 Bearings. The bearings should preferably be ball or roller type with adequate provisions for lubrication and sealing out contaminants. The Number of Layers of Aluminum Wires* 1 or 2 4 or more & Expanded Conductors $D_s(min) - 20 \ D_c - 8$ inches or $20D_c$ -20 cm except that D_s shall not be less than 12 D_c D_s-Sheave
diameter at base of groove D_c-Conductor diameter R_g-Sheave groove radius D_g-Groove depth | R | · g | $\mathrm{D_{g}}$ | |-------------|--------------------|------------------| | Minimum | Maximum | Minimum | | $0.55D_{c}$ | 1.1 D _c | $1.25D_c$ | | $0.55D_c$ | $0.75 D_{c}$ | $1.25D_{c}$ | | $0.55D_c$ | $0.625D_{c}$ | $1.25D_c$ | A sheave designed for a conductor of a given diameter, in accordance with this figure, may be used for stringing conductors of smaller diameters using above table or as follows: | Number of Layers | |--------------------| | of Aluminum Wires* | 1 or 2 4 or more & Expanded Conductors Minimum Diameter Conductor That May Be Used in a Sheave Designed for a Conductor of a Larger Diameter in Percent of the Diameter of the Larger Conductor > 50% 75% 87.5% *The 7 central wires of all-aluminum conductors shall be considered as a core. Example: A sheave, with a groove radius of 0.825 inches and a diameter at the bottom of groove of 22 inches, designed for use with a conductor 1.5'' in diameter may be used for stringing a 2 layer conductor with a diameter as small as 0.75''. Fig 6 Recommended Sheave Configuration lubricant must be suitable for the temperature range involved, and where sealed bearings are not used, care should be taken to ensure subsequent lubrication with the same type of grease. Mixing of greases of different types (that is, lithium base and calcium base) may cause degradation of the lubricant and subsequent bearing failure [6]. Bearings must have sufficient capacity to withstand running or static loads without damage. Proper maintenance is essential. 9.4 Material and Construction. Travelers may be of any suitable material, with due consideration to weight. Unlined sheaves for stringing aluminum conductors should be made of aluminum or magnesium alloy and the grooves should have a smooth, polished finish. It is recommended that the manufacturers safe working load, or other identification to enable determination of such load, be permanently displayed on the traveler. 9.5 Lining. While grooves may be unlined or lined, lining with elastomer provides cushioning to increase bearing area and precludes damage to the conductor from scratched or marred groove surfaces. Steel pulling lines are likely to scratch or mar the surface of unlined grooves, so where such lines are to be used in the same groove as conductor, grooves definitely should be lined. It is generally recommended that all sheaves be lined. The elastomer used for sheave linings should be capable of withstanding all anticipated temperatures without becoming brittle or developing semipermanent flat areas. It should be sufficiently hard to prevent the conductor from climbing up the side of the groove. Bearing pressure limits for sheave linings are further discussed in Appendix C. 9.6 Electrical Characteristics. Neither lined nor unlined travelers should be relied on for grounding the conductor being installed. Greased bearings do not provide necessary conductivity and may be damaged by relatively small currents passing from the sheave to the body of the traveler. Semiconductive linings, commonly referred to as conductive linings, tested to date are reported burned with currents as low as 20 mA. The induced electrical charges on conductor and pulling lines, particularly when stringing in the proximity of energized lines, must be drained off with traveler grounds which bypass the linings or greased bearings, or both. Traveler grounds provide a means to bypass electrically the sheaves and ground the conductor directly to a ground source. 9.7 Bundled Configurations. Bundle conductor type travelers for stringing two or more subconductors simultaneously require special considerations. When even numbers of conductors are strung, a symmetrical arrangement is used with an equal number of conductors on each side of the pulling line. An independent center sheave is provided only for the pulling line and must be of suitable material to withstand the abrasion of the pulling line. When odd numbers of subconductors are strung, the center one could follow the pulling line in the center sheave. However, this is usually not desirable because of the material of the groove or because of contaminants deposited in this groove by the pulling line, or because of both. Offset type bundle conductor travelers are used which balance the load by properly spacing the even and odd number(s) of conductors on each side of the pulling force. These travelers are directional and should be color-coded; care should be taken to ensure their proper orientation. When multiple conductors are strung in bundled conductor type travelers, reduced horizontal spacing between grooves can result in conductor oscillation, even in very light crosswind too severe to permit satisfactory sagging. (For example, groove spacing of 5.4 conductor diameters permitted sagging of conductors in a crosswind condition which repeatedly prevented sagging with a groove spacing of 2.7 conductor diameters because of very active conductor oscillation.) When stringing multiple conductors around line angles in excess of 5°, bundle conductor travelers are required until the running board passes through the traveler, but should be replaced prior to sagging with single type travelers to provide proper wire length in the clipped-in position. It is desirable during sagging for the horizontal spacing of the sheaves to match the final subconductor spacing to aid in preventing subconductor sag mismatch. Some bundle conductor travelers may be converted to single conductor type travelers. Multisheave bundle conductor type travelers and running boards must be designed to com- plement each other and work in unison. Running boards should only be used to pull in conductors; they should not be used to line up the conductors with an anchor (that is, running boards should not be pulled sideways). Running boards should have their safe working load displayed. It is recommended that all running boards be proof tested to 50% over the safe working load. During stringing, normal pulling speeds should be maintained when the running board approaches a traveler. 9.8 Helicopter Travelers. Helicopter travelers utilize outrigger arms which guide the pilot line into the throat area of the traveler. These outriggers are usually brightly painted to be easily seen from the air. Spring loaded gates are employed to contain the line. For bundle conductor travelers, additional guides may be utilized to funnel the lines into the proper groove. The design of helicopter travelers should be such that personnel are not required on the structure during placement of the pilot line. After initial placement of the line by helicopter, normal stringing practices are employed. Helicopter travelers are directional and care must be exercised to orient them properly on the structures. Due to the rotor wash of the helicopter, if the attachment method of travelers does not prevent twisting, yaw bars should be utilized for this purpose. Some standard travelers may be converted to helicopter type by the addition of accessory parts. 9.9 Uplift Rollers and Hold Down Blocks. Uplift rollers that attach to the traveler or hold down blocks that are separate devices must be used at positions where uplift might occur. See Fig 7. Uplift can occur with the pulling line during the stringing operation, but usually will not happen when the conductor(s) arrive. Hold down blocks that can be removed prior to the arrival of the conductor(s) without stopping the pulling should be used. Uplift devices that attach to bundle travelers are usually directional and are usually positioned toward the pulling end. These devices should have a breakaway feature in the event of fouling of the pulling line or incorrect installation. 9.10 Traveler Suspension. The vertical location of sheaves should be considered for sagging purposes. For simplicity in marking and clipping procedures, it is desirable for the vertical posi- Fig 7 Bundle Conductor Traveler with Uplift Roller and Grounds tion of the conductor in the sheave to be at the same elevation as when clamped in the final position in the suspension clamp. Clearance required for running boards over the sheaves of the bundle conductor type traveler frequently prevents proper vertical positioning of conductors. The few inches of drop of the conductor below its final position may be unimportant on tangent towers. # 10. Typical Procedures for Stringing Operations 10.1 Pull, Tension, Anchor and Splicing Sites 10.1.1 Site Selection. The selection of pull, tension, anchor and splicing sites must consider accessibility, location of deadends, length of conductor to be strung, available conductor and line lengths, puller capacity, snub structure loads, including placement of pullers, tensioners and conductor anchor locations, placement of reel stands, pilot line winder(s), reel winders and the ability to provide an adequate grounding system. 10.1.2 Equipment Location. The location of the puller, tensioners and intermediate anchor sites must be selected so that the snub structures are not overloaded. Where possible, a pulling line slope of three horizontal to one vertical from the traveler to the site is con- Fig 8 Tension Site Fig 9 Cradle Block System sidered good practice. Refer to Appendix A for calculation of snub structure loads. It is also necessary that the puller be positioned so that the pulling line enters the machine at a minimum horizontal angle to minimize any possibility of damaging the line. When a bull-wheel type puller is employed, the reel winder to recover the pulling line is located at the pulling site. The pilot line winder is located at the tension site. The arrangement of the tensioner and reel stands should be such that the lateral angle between the conductor as it approaches the bullwheel and the plane of rotation of the wheel is not great enough to cause the conductor to rub on the sides of the groove. As an
example, birdcaging problems were eliminated with large conductors by using a maximum fleet angle of 1.5° from the plane normal to the conductor reel axis and a back tension of approximately 1000 lb (450 N). Problems of birdcaging are normally more acute with large conductors of three or more aluminum layers. 10.1.3 Anchors. Anchors are normally required for holding equipment in place and snubbing conductors against tensions imposed. The type of anchor is dependent upon the soil conditions and sagging and stringing tensions. Portable equipment is often used for this purpose, as well as ground type anchors. Slack should be removed from all anchor lines prior to loading to minimize the possibility of equipment movement or impact loads to the anchors. 10.1.4 Equipment Grounding. Adequate grounding must be established at all sites. The methods required and equipment used will be determined by the degree of exposure to electrical hazards and the soil conditions at the site. All equipment, conductors, anchors and structures within the work area must be bonded together and to the ground source. ### 10.2 Section Between Snub Structures 10.2.1 Crossing Structures. When crossing roads, highways, railroads, energized lines, etc, some type of supplemental crossing structure must be employed. This can be guard poles erected in football goalpost fashion of suitable height. In some cases, rope nets are strung between the poles to give more positive protection. A system of blocks can also be used to cradle the pulling lines and conductors. This is accomplished with support lines, space lines and load lines to properly locate the special cradle blocks to afford protection should tension be lost during the stringing operation. 10.2.2 Terrain Problems. The terrain must be analyzed to determine if there are areas of impaired ground clearance under stringing tensions. If such areas exist, precautions must be taken to protect the conductor. Locations of conductor or pulling line uplift must also be identified in order that hold down blocks and uplift rollers may be provided. Other unusual terrain features may dictate special consideration. 10.2.3 Traveler Installation. Installation of travelers, including finger lines where used, requires consideration of traveler attachment methods and the need for and location of traveler grounds and uplift rollers. For single conductor vertical insulator assemblies, the travelers are normally connected directly to the insulators, and with vee string insulator assemblies, to the yoke plate. For most bundled conductor lines, the travelers are connected to the yoke plate. With post-type insulators, the travelers are connected to the end of the insulators. Where travelers are installed to string through deadend towers, the travelers are normally connected directly to the tower. If substantial line angles are involved, two travelers in tandem may be required to reduce the bending radius of the conductor or the load on each traveler, or both. Where bundled conductor travelers are used at line angle locations of over 5°, it is advisable to change to individual single conductor travelers after the passage of the running board to facilitate accurate sagging. When adequate quantities of travelers are available, it is common practice to install them at the same time the insulators are installed. Under some situations, travelers may be attached to slings or rods in place of the normal insulator assembly. Need for traveler grounds and required locations must be based on the degree of exposure to electrical hazards. When such hazards exist, as a minimum, traveler grounds should be installed at the first and last tower between the tensioner and puller. When stringing in proximity to energized lines, additional grounds shall be installed as required, but at a maximum distance not exceeding two miles. Additionally, grounds shall be installed within a reasonable distance on each side of an energized crossing, preferably on the adjacent structures. Travelers with grounds are usually sensitive to direction and care must be exercised in hanging the travelers. Usually the grounds are to the pulling end. Each traveler with grounds must be connected with temporary grounding sets to provide an electrical connection between the traveler and earth, or to some conductive medium that is at earth potential. Personnel should never be in series with a ground lead. Traveler grounds should have a suitable grounding stud located in an accessible position to enable placing and removing the ground clamps, with hot sticks when necessary. Traveler grounds will also help protect the sheave linings. At the time the travelers are hung, finger lines, when used, should be installed and tied off at the base of the structures. If the helicopter method of pilot line installation is not to be used, the pilot line could be installed at this time in lieu of finger lines. #### 10.3 Conductor Splicing 10.3.1 Conductor Reel Lengths. Standard conductor reel lengths and dimensions are shown in Appendixes D and E. Normally, more than one conductor reel length will be required to obtain the total length of conductor to be strung at one time. Therefore, the conductor lengths must be spliced together at the tension site or midspan sites, or both. Regardless of the site, however, the required equipment and basic procedures are essentially the same and applicable to conductors, overhead groundwires and metal pulling lines. 10.3.2 Equipment. The major equipment required for splicing operations consists of a splicing cart equipped with a hydraulic compressor, compression joints, strand restraining clamps, hold down blocks, rope, conductor grips, hoists, ground rods, personal grounds, bonding cables and bare conductor and clamps for a ground grid when it is to be installed. All equipment must have adequate mechanical or electrical capabilities, or both, for the work involved. 10.3.3 Bonding and Grounding of Conductor Ends. It is extremely important that precautions be taken to prevent personnel from accidentally placing themselves in series between two conductors which are to be connected together, or in series to ground with either conductor. Accidents of this type can be prevented by providing an equipotential work area, by grounding and placing a jumper across the opening between the ends of the two conductors to serve as a shunt or by a combination of both. The following method is recommended when the line being strung might accidentally become energized, or when it is adjacent to parallel, or both, to an existing energized transmission line, or when the possibility of high fault currents exists and the work is to be performed at ground level by personnel in direct contact with the earth. - (1) Install a ground grid if the splice is to be made in midspan. Ground grids installed at the pull and tension sites will suffice for splices made at those locations. - (2) Bond the splicing cart and all other mobile equipment, such as tractors, which may be holding the conductor ends, to the grid. - (3) Bond the two conductors to be spliced to a common ground using personal grounds connected within 10 ft (3m) of each conductor end, then bond the conductor ends directly together using a jumper. - (4) Perform all splicing work within the grid perimeter. In lieu of the ground grid, a metallic grounding mat may be used. The conductor ends and the mat should be bonded to a common ground. As before, a jumper must be installed directly between the conductor ends. If multiple ground rods are used, they should be bonded together. All splicing work should be performed on the mat. If neither the grid nor the mat are used, all splicing work may be performed on an insulated platform. The conductor ends should be bonded to a common ground and directly together with a jumper as before. If multiple ground rods are used, they should be bonded together. As a minimum, regardless of the level of exposure, a system of interconnected ground rods should be used, but the magnitude of potential electrical hazards must be thoroughly considered. 10.3.4 Compression Joint Application. The dies used to compress the compression joint must be of the correct size, and all presses must be made in the proper sequence specified by the manufacturer of the joint. Joint compounds that aid electrical contact and prevention of corrosion must also be used as specified by the manufacturer. Failure to adhere to these requirements will result in defective splices which in turn may become potential hazards. 10.3.5 Passing Compression Joints over Travelers. The number of sites required for splicing conductors is dependent upon the number of conductor reel lengths required for the total length of conductor to be strung and the method used to join the conductor lengths as they are pulled out. The most common stringing practice avoids pulling compression joints over the travelers. It consists of using woven wire grips to join the conductor lengths at the tension site until the total required length of conductor has been strung. The conductor is then lowered to the ground at each location of the woven wire grips, spliced, and later pulled up to sag. Another stringing practice consists of splicing the conductor lengths together at the tension site with compression joints specifically designed to be pulled over travelers. It has an advantage in that all splicing is done at one location, thus reducing the total number of required operations when compared with the previous practice, particularly when ground grids are required. If this practice is to be employed, a preliminary study of the line to be strung should be made to determine the maximum stringing tensions and roll over angles that would be encountered. Compression joint manufacturers should be consulted. #### 10.4 Stringing Procedures 10.4.1 Installation of Pulling Lines. When finger lines are installed, they are used to pull the pilot line or pulling line
through the travelers as it is pulled out. The pilot line, when used, is then pulled back by use of the pilot line winder behind it pulling the pulling line from a reel or drum puller, which can in turn be used to pull in the conductor. The initial pulling out of the pilot line or pulling line is usually done with any vehicle such as a pickup truck or tractor, as appropriate. When helicopter methods are used, the pilot line is first pulled out by the helicopter (or from the helicopter) and directed by the helicopter pilot into travelers specially designed for this method. This initial line is usually small diameter synthetic rope, but could also be small steel line. This pilot line is then used to pull in the pulling line in the same manner as previously described. 10.4.2 Installation of Conductor. Once the rope pulling lines have been installed and prior to pulling in any conductor or conductive type pulling lines, a running ground must be installed between the reel stand or tensioner for conductor, or puller for pulling line, and the first tower. This ground must be bonded to the ground previously established at the site. Pulling lines are usually pulled in under tension. The pulling line is then connected to a single conductor through a swivel link, or to bundle conductors through swivel links and a running board. Swivel links should not be used on a threestrand synthetic pulling line. Pulling lines may be synthetic fiber or wire rope. When wire rope is used, it is recommended that swaged type be used since it has less tendency to rotate under load, which minimizes most spinning problems. Swaged rope also has a much smoother outer surface. This smoother surface, plus low rotation, minimizes wear on traveler sheaves and bullwheel grooves on pullers. When synthetic pulling lines are used, a no torque rope is recommended to minimize the problems caused by kinking or twisting. This causes accelerated loss of strength of the pulling line, which results in a hazardous condition. A ball bearing swivel link is usually used for the connections between conductors, pulling lines and running boards. Swivel links must be of sufficient rated working load to withstand loads placed on them during tension stringing. They should also be compatible with the travelers being used so they can pass through without spreading or damaging the sheaves. These special line stringing swivel links are clevis type and compatible with woven wire grips and swaged steel pulling lines. It is recommended that swivel links not be passed over bullwheels under significant tension since they may be weakened or damaged due to bending. When reeving the bullwheels of a tensioner with the conductor entering and leaving the wheel from the top facing in the direction of pull, the conductor should enter from the left and leave from the right for right-hand lay (standard for aluminum conductor) and enter from the right and leave from the left for left-hand lay (standard for groundwire). This procedure will avoid the tendency to loosen the outer layer of strands as the conductor passes around the bullwheels. It is recommended that conductor of only one manufacturer be used in a given pull, and preferably in any given ruling span. This precaution will help avoid significantly different conductor sag characteristics. Attachment of the conductor to the pulling line, running board or to another reel of conductor to be pulled successively is accomplished by the use of woven wire grips. These grips should be compatible strength-wise and sized as close as possible for the conductor or pulling line on which they are used. Overall diameter of the grip over the conductor or rope should be small enough to pass over the sheaves without damage to the sheave or its lining and the grip must also be capable of mating with a proper size swivel link. Metal bands should be installed over the grip to prevent it from accidentally coming off and dropping the conductor. The open end of the grip should be secured with two bands. This should then be wrapped with tape to prevent accidentally stripping the grip off the conductor if the end were to snag or catch. This is particularly important when these grips are used on pulling lines or between lengths of conductor when more than one reel is strung. The grips are then passing through the travelers backwards and if the ends are not banded and taped, they could be stripped off. Experience has shown that pulling speed is an important factor in achieving a smooth stringing operation. Speeds of 3-5 mi/h (5-8 km/h) usually provide a smooth passage of the running board or connecting hardware, or both, over the travelers, whereas slower speeds may cause significant swinging of the traveler and insulator-hardware assemblies. Higher speeds create a potential hazard of greater damage in case of a malfunction. The maximum tension imposed on a conductor during stringing operations should not exceed that necessary to clear obstructions on the ground. This clearance should be confirmed by observation. In general, stringing tension of about one-half of the sagging tension is a good criterion. If greater tensions are required, consideration must be given to any possible prestressing of conductors that may result, based on the tension and time involved. Consideration must also be given to the fact that when long lengths of conductor are strung, the tension at the pulling end may exceed the tension at the tensioner by a significant amount. Differences in tension are caused by the length of conductor strung, number and performance of travelers, differences in elevation of supporting structures, etc. (See Appendix B, Efficiency of Travelers During Tension Stringing.) Light and steady back tension should be maintained on the conductor reels at all times sufficient to prevent over-run in case of a sudden stop. It must also be sufficient to cause the conductor to lie snugly in the first groove of the bullwheel and to prevent slack in the conductor between bullwheels. It may be necessary periodically to loosen the brake on the reel stand as the conductor is payed off. As the - 1. Anchor (see 10.1.3) - 2. Running board - 3. Bundled conductor - 4. Ground grid (see 5.5.5) - 5. Woven wire grip - 6. Running ground - 7. Structure base ground - 8. Traveler ground (see 10.2.3) - A. Typical stringing arrangement B. Typical pulling line installation with pilot line winder C. Typical installation of pulling lines with tractor and finger lines D. Typical installation of pilot lines with helicopter Fig 11 Bullwheel Reeving for Right-Hand Lay Conductor reel empties, the moment arm available to overcome the brake drag is reduced, and the tension therefore rises. This may cause the conductor to wedge into the underlying layers on the reel. The reel should be positioned so that it will rotate in the same direction as the bullwheels. Loosening of the stranding that often occurs between the reel and the bullwheels of the tensioner is caused to a great extent by coil memory in the conductor. As the conductor is unwound from the reel and straightens out, the outer strands become loose, a condition that is particularly noticeable in a large diameter conductor and can be best observed at the point at which it leaves the reel. As the conductor enters the bullwheel groove, the pressure of contact tends to push the loose outer strands back toward the reel where the looseness accumulates, leading to the condition commonly known as birdcaging. If this condition is not controlled, the strands can become damaged to the extent that the damaged area of conductor must be removed. This problem can be remedied by allowing enough distance between the reel and tensioner to permit the strand looseness to distribute along the intervening length of conductor and simultaneously maintaining enough back tension on the reel to stretch the core and inner strands to sufficiently tighten the outer strands. The maximum time conductors may safely remain in the travelers depends on wind induced vibration or other motion of the conductors. Windblown sand can severely damage conductors in a few hours if clearance is less than about 10 ft (3m) over loose sand with little vegetation. Damage from vibration at sagging tensions is quite possible and, when required, dampers should be installed promptly. However, at lower tensions generally used for initial stringing, damage to conductors or sheave bearings, or both, is not likely to occur from vibration. Even for travelers having lined sheaves with root diameters 20 times the conductor diameter, it is important to complete conductor stringing, sagging, plumb marking, clipping, spacing and damping operations as soon as possible to prevent conductor damage from weather, particularly wind. Conductor should not be strung if adverse weather is predicted before the entire sequence can be completed. Subconductor oscillation may occur in bundled conductor lines and tie-down methods, temporary spacers, or other means may be required to prevent conductor surface damage prior to installation of spacers. Temporarily positioning one subconductor above another to prevent conductor clashing is undesirable since different tension history will produce subconductor mismatch unless the tensions are low and duration short enough so that creep is not a factor. Conductor clashing can mar the strands and produce slivers which can result in radio noise generation. If a bullwheel type puller is utilized, the pulling line must be recovered during the pulling operation on a separate piece of equipment. This function is usually performed by a reel winder which is placed behind the puller in an arrangement similar to the reel stand at the tension site. Once the conductor has been pulled into place, one end is normally attached to the structure through a deadend insulator-hardware assembly or to a previously sagged section of conductor, and the other end transferred from the puller or
tensioner to the sagging unit. Attachment of the conductor to the sagging unit is accomplished by means of a properly designed conductor grip which must be capable of holding, without slipping, full sagging tension with appropriate safety factors. This must take into account possible impact loads which may be encountered as the pulling line wraps on the winch drum as well as over-tension if the conductor is accidentally pulled above desired sag. Extreme caution must be exercised when transferring conductor from one holding device to another, or when connecting two conductors to ensure that the conductors are at all times adequately bonded together and to all equipment being used. This is essential to ensure that personnel cannot get in series with two items at different potentials, or with a conductor which could conduct induced potential to a grounded object. Methods and procedures for the installation of overhead groundwires are the same as those indicated for conductors except that the loads and tensions involved are lighter. Groundwires are commonly pulled with lightweight pulling lines which are installed directly without the use of a pilot line. The groundwire(s) are normally installed prior to pulling the conductors due to their higher location on the structures and to prevent damage to the more easily damaged conductors when pulling groundwires up through them. #### 10.5 Sagging Procedures 10.5.1 Sagging and Clipping Offset Theories. Theoretically, conductor sagging is based upon hyperbolic functions describing a true catenary curve [7], [8]. In practice, however, parabolic approximations of the catenary are often utilized. The theory of clipping offsets is based upon the fact that, between snub structures, the total length of conductor at sag in the travelers is equal to the total length of conductor at sag in the suspension clamps [8]. Sags and clipping offsets are interrelated since sag corrections required for computing sags are dependent upon clipping offset computations. The application of sags and clipping offsets computed in this manner will produce balanced horizontal forces which will be the same for each structure within the sag section [9]. Figures 13 through 19 depict a basic analysis for clipping offsets and typical parabolic methods and computations required for sagging conductors. Where greater accuracy or more detailed information is required, see [7], [8], and [9]. 10.5.2 Records and Forms. To assist in an accurate compilation of sag section data, a set of prepared forms should be devised to record accurately all field data, computations, drawing numbers, etc, as soon as they are obtained. Should questions arise while the work is in progress, or at a later date, the availability of ### **BASIC THEORY** Σ conductor length in travelers = Σ conductor length in suspension clamps. Fig 13 Example of Application of Clipping Offsets Fig 14 Nomograph for Determining Level Span Equivalents of Nonlevel Spans Fig 15 Nomograph for Determining Control Factor for Conductor Sagging Ø = Angle of sight. - + Ø When angle is above horizontal. - Ø When angle is below horizontal. - t = Vertical distance below support to line of sight. (See Figure 17) - T = Vertical distance below support for transit. - S = Sag. - A = Horizontal distance between points of support obtained from structure list or plan & profile. - B = Vertical distance between points of support obtained from plan & profile, tower site data sheets or field measurement. - + B when support ahead is higher. - B when support ahead is lower. - M = Determined from curve on Figure 17. #### EXAMPLES GIVEN: | A = 1 | 400.0' | s | = | 49.1 | @ | 60°F | |-------|---------------------|---|---|--------|----------|------| | B = - | + 60.0 ['] | s | = | 51.2 | @ | 90°F | | T = | 40.0' | t | = | 59.12 | (a) | 60°F | | | | t | = | 63.76 | @ | 90°F | | 1 | | | | METHOE | 2 | _ | ## Tan $\emptyset = \frac{B + 2T - S(2 + M)}{A}$ Tan $\emptyset_{60^{\circ}F} = \frac{60.0 + (40.0)(2) - (49.1)(2 + 0.019)}{1400.0} = 0.02919$ $\emptyset_{60^{\circ}F} = + 1^{\circ} 40' 19''$ Tan $\emptyset_{90^{\circ}F} = \frac{60.0 + (40.0)(2) - (51.2)(2 + 0.027)}{1400.0} = 0.02587$ $\emptyset_{90^{\circ}F} = + 1^{\circ} 28' 55''$ Change in angle \emptyset for $5^{\circ}F = (1^{\circ} 40' 19'' - 1^{\circ} 28' 55'')(\frac{5}{30}) = 0^{\circ} 1' 54''$ Fig 16 Conductor Sagging by Calculated Angle of Sight - t = Vertical distance below support for target. - T = Vertical distance below support for transit. - S = Sag. - A = Horizontal distance between structures obtained from structure list or plan & profile. - B = Vertical distance between points of support obtained from plan & profile, tower site data sheets or field measurement. - M = Determined from curve below. #### Fig 17 Conductor Sagging by Calculated Target Method #### **EXAMPLES** #### GIVEN: A = 1400.0' B = 60.0' T = 40.0' S = 49.1' @ 60°F S = 51.2' @ 90°F #### METHOD I $\begin{array}{lll} t &= (2\sqrt{S} - \sqrt{T})^2 \\ \sqrt{T} &= 6.325 \\ \sqrt{S_{60^{\circ}F}} &= 7.007 \\ 2\sqrt{S_{60^{\circ}F}} &= 14.014 \\ t_{60^{\circ}F} &= 59.12 \end{array}$ $\sqrt{S_{90}\circ_F}$ = 7.155 $2\sqrt{S_{90}\circ_F}$ = 14.310 $t_{90}\circ_F$ = 63.76' Change in "t" for 5°F = (63.76 - 59.12)($\frac{5}{30}$) = 0.77' #### METHOD 2 Fig 18 Conductor Sagging by Horizontal Line of Sight S = Sag. t = Vertical distance below support for line of sight. = $T \pm B - A$ tan \emptyset when angle \emptyset is above horizontal. = $T \pm B + A \tan \emptyset$ when angle \emptyset is below horizontal. T = Vertical distance below support for transit. B = Vertical distance between points of support—obtained from plan and profile, tower site data sheet or field measurement. +B when support ahead is higher. -B when support ahead is lower. A = Horizontal distance between points of support - obtained from structure list or plan and profile. \emptyset = Angle of sight. M = Determined from curve on Figure 17. # EXAMPLES GIVE N: #### METHOD I METHOD 2 NOTE: When using Method 2, value of "T" should lie between 3/4"S" & 4/3"S" $S = (\frac{\sqrt{T} + \sqrt{t}}{2})^2 \qquad \qquad S = \frac{T}{2} + \frac{t}{2} - \frac{tM}{8}$ $t = 40.0 + 60.0 - 1400.0 \ tan \ 1^\circ \ 40' \ 21" \qquad t = 59.12'$ $= 59.12' \qquad 1/2 = 29.56'$ $\sqrt{t} = 7.689 \qquad T/2 = 20.0'$ $\sqrt{T} = 6.325 \qquad M = 0.061$ $S_{60°F} = 49.1' \qquad S_{60°F} = 20.0 + 29.56 - \frac{(59.12)(0.061)}{8}$ $S_{60°F} = 49.1'$ Fig 19 Conductor Sagging for Checking Sag S such records might greatly assist in providing the answers. 10.5.3 Design Criteria. A complete set of design criteria for the sag section should be available in the field. Included should be structure design data, stringing data, line profiles, conductor and pulling line sag templates, etc. 10.5.4 Equipment. Major equipment required for sagging includes transits (or similar viewing devices), portable radios, conductor thermometers, sagging platforms and targets, hand levels, stadia rods, measuring tapes and miscellaneous marking devices. 10.5.5 Pull Site and Snub Structure Relationship. A pull site should be adjacent to the snub structure whenever possible. However, if the snub structure is a deadend structure, it could be located several spans away. When this occurs, the conductor between the pull site and the snub structure must be slacked down as much as possible at sag completion to minimize prestressing of the conductor. It is not a desirable situation since the next sag section will include the prestressed conductor together with unstressed conductor. Such a situation should be avoided. 10.5.6 Conductor Uplift. Under certain conditions, conductor uplift within a sag section could occur at sag tension. Hold down blocks or uplift rollers, or both, will be required to hold the conductor in the travelers to compensate for this condition. 10.5.7 Sag Section Length. A sag section should not exceed 4½ mi (7 km), or approximately 20 spans, in length. Exceptions do occur but should be avoided, particularly in hilly or mountainous terrain. Excessive sag section length will usually result in sagging difficulties. 10.5.8 Sag Span Locations. Before sag spans are selected, a scale profile of the entire sag section should be reviewed to provide a complete, clear picture of the relationship between the terrain and the conductor. Such a profile is a valuable tool to be used in the selection of the sag spans and may emphasize locations of potential problems. Sag spans should be at or near each end of the sag section. For sag sections over two miles long, additional sag span(s) near the center of the sag section should be utilized. Sag spans should be the longer, more level spans. If the sag span is not a level span, it is best if the transit is located at the lower structure since conductor control is increased. Sag spans should also be located on each side of line angles greater than 10 degrees. 10.5.9 Tension Changes. Tension changes may occur at any point within a stringing section where a deadend structure is located. The most complicated situation occurs, however, when tension changes divide the stringing section into three or more separate parts, each of which must be sagged independently of the other. Under these conditions, two or more ruling spans, and hence two or more required tensions, exist within the stringing section. Although the conductor is continuous throughout the entire stringing section, the tension changes may be accomplished by deadending or the correct use of grips and hoists. Deadend structures will always exist at any point where conductor tension changes, but the mere existence of a deadend structure does not always imply a tension change. 10.5.10 Control Factors. When choosing a sagging method, it should be kept in mind that the point of tangency of the line of sight from the transit to the conductor should fall in the middle third of the span. Reference to the profiles will usually give
an indication of the best sagging method to use. For example, tall structures on flat terrain and short spans indicate that the methods shown in Figs 17 and 18 would probably provide the best control. Hills, long spans and large conductor sag indicate that the method shown in Fig 16 might be best. Fig 15 depicts various nomographs and curves which may be used to ensure that the methods chosen to sag the conductor will provide adequate control. After the sag spans have been selected, they should be field checked for any potential difficulties which might occur during sagging. At the same time, sagging hubs should be established if required, and measurements required for sagging computations should be obtained. Although stopwatch sagging is sometimes used, accuracy restricts its application to smaller conductors and shorter spans than normally found in transmission work. 10.5.11 Preparation Prior to Sagging. Preparations for performing the mechanics of conductor sagging should be completed well in advance of the actual sagging operation. Otherwise, excessive costs and delay can be incurred. Fig 20 Sagging Thermometer and Container When required, sag span transit hubs should be located and staked, transit height reference marks placed on the structures, and sagging platforms and transit mount brackets installed. Sagging thermometers should be installed sufficiently prior to the actual sagging operation to allow temperature stabilization and should be mounted far enough above the ground to avoid the effect of ground heat radiation. Thermometers should be inserted in a container (sometimes a conductor section) to represent the temperature internal to the conductor. See Fig 20. Two thermometers should be used and should be located in the sag spans which are near, or at the ends of the sag section. The availability of sufficient portable radios should be ensured and, if necessary, transportation should be arranged. All sagging personnel should ensure that they have the proper equipment and sagging data in their possession. The person who controls the sagging should have in his possession a complete set of records pertaining to the entire sagging operation. Due to adverse terrain conditions, sagging personnel will not always be able to observe all spans of the sag section. A study of the sag section profile will normally reveal such a situation. If the condition exists, additional help will be required to ensure that the conductors are sagging evenly in the blind spans. 10.5.12 Performance of Sagging Operation. After all preparations have been made and all personnel associated with the sagging operation are in position, the person who controls the sag should relay all last minute details to the puller operator. He should obtain last minute thermometer readings and use the average of the two readings adjusted for an estimated increase or decrease in temperature at sag completion as the temperature for sagging the conductor. This information should be relayed to all persons involved in the sagging. Never sag a conductor to the level of a previously sagged conductor. Sag all conductors based on temperature design criteria only. At the time of sagging conductors, the sag of any given phase should be within six inches of the theoretical value for the existing temperature conditions. The sag of all phases of a circuit should have similar tolerances and direction from theoretical sag. Subconductors within a phase should have tolerances between each other of not over two conductor diameters with a maximum of two inches. When checking sags at a time after original sagging, it must be remembered that creep will increase the sag and greater tolerance limits must be allowed for this and other unavoidable variations. Although it is desirable to check sags as soon as possible, it must be remembered that errors may be introduced during the clipping and deadending processes. Communications and cooperation between the personnel who are sagging and the puller operator, and among the personnel themselves, are essential. The personnel should keep the puller operator constantly informed of the conductor movement, and if bundled conductors are being sagged, they should also keep him advised of the state of evenness existing between the subconductors. Conductor is sagged in progressive order from the tensioner end of the sag section to the puller end. Therefore, as the puller operator initiates conductor movement at the puller end, each person in a sag span, progressing from the puller end to the tensioner end, should inform the person who is actually sagging of the conductor movement as it moves through the sag section. Two benefits are derived by this method of communication. First, the person who is actually sagging knows when to expect conductor movement in his sag span, and second, the puller operator knows when he should slow down or stop pulling. Actual conductor sagging is initiated by the person who controls the sag and is first performed by the person in the sag span farthest from the puller working with persons who have spliced the conductor in the span containing the anchors for the previous sag. As the conductor is slowly released from the anchors, the person who is sagging should have the puller operator take the slack out of the conductor until it is slightly below sag. This condition should be maintained until the conductor is completely released from the hold down blocks. Once the conductor is completely released, it can be pulled to sag. If the conductors being sagged are bundled conductors, they should be brought to sag as evenly as possible. Should one of the subconductors be inadvertently pulled above sag in the sag span, severe difficulties can develop. In this situation, an attempt to slack one subconductor of the bundle down to sag usually results in unevenness in all of the other spans. Should this situation occur after an attempt to slack one subconductor down to sag, the sag should be stopped and the entire bundle slacked down below sag and evened. Another attempt to sag the conductors can then be made. Once the first sag span has been brought to sag, the subconductors of the bundle should be checked for evenness, and then the next progressive sag span should be sagged. Unevenness in the sag spans in the middle or puller end of a sag section can usually be corrected by some manipulations of the conductors and under normal conditions will not result in starting the sag over again. Attempts to sag conductor on excessively windy days should be avoided since serious errors can result due to conductor uplift caused by wind pressure on the conductor. Should severe wind conditions occur after a sag is in progress, allowances must be made for conductor uplift or the sag must be stopped. Sag Progression. There are various techniques which are employed to determine if a conductor is sagging correctly. As stated before, conductor is sagged progressively toward the puller end of a sag section. As the first sag span comes to sag, the second person to sag should find that the conductor in his sag span is too high. This is to be expected and is normal unless the conductor is excessively high. As the second person slacks his conductor down to sag, the third person should find the conductor too low in his sag span, and so on until the sag is completed. If any of the persons who are sagging do not have the required conditions when the conductor is brought to sag in the preceding sag span, the entire sagging operation should be halted until the trouble is located. If the conditions above are met, satisfactory sag progression is indicated. However, if an attempt to sag any sag span results in serious movement of a previously sagged span, trouble is again indicated, and the sagging operation should be halted until the trouble is located. When the sag is completed, a tension reading should be recorded if a dynamometer has been used. The reading should be very close to the nominal tensions expected. Should the reading deviate excessively from the nominal tensions expected, the trouble should be located and any corrections made before the completed sag is accepted. Tensions. The reaction of conductor to tensions applied during sagging operations is similar to the wave created by dropping a stone in water. Once the wave is initiated, it continues for some period of time. Similarly, when tensions are applied to the conductor at the puller end of a sag section, the movement of the conductor is initiated at that point, and although the tension may be held constant (puller stops), the movement of the conductor continues toward the other end at a decreasing rate. This movement must be dealt with when sagging conductor. The travelers which are used to string conductor are not frictionless and, therefore, can cause problems during a sagging operation. If one or more of the travelers becomes jammed, sagging can become very difficult. A traveler which swings in the direction of the pull may be an indication of a defective traveler. Should unexplainable sagging difficulties occur, the travelers should be checked. Tensions applied to the conductor to overcome sticky or jammed travelers can cause sudden, abrupt movement of the conductor in the sag spans and quickly cause loss of sag, particularly if the conductor is already very close to sag. ### 10.6 Deadending Precautions 10.6.1 Electrical Hazards. The electrical hazards that exist when deadending work is being performed are analogous to those that exist during splicing operations. Therefore, precautions must be taken to prevent personnel from accidentally placing themselves in series with a potential electrical circuit. 10.6.2 Tension and Pull Sites. Continuity of grounding and bonding must be maintained when conductors or conductive pulling lines, or both, are transferred between pieces of equipment, or between pieces of equipment and anchors. In the majority of cases, it will be necessary to
move an existing ground on a conductor or pulling line before it can be transferred. Before removing the existing ground, the person must install his own personal ground to ensure that he will not place himself in series to ground with the conductor or line being transferred. When two conductors or pulling lines, or any combination of them, are to be spliced or connected together in any way, the recommendations of 10.3.3 should be followed. 10.6.3 Deadend Structures. Prior to installing or removing deadend jumper on a metal structure, personal grounds must be installed on the conductors on both sides of the intended work area and connected to the structure. If the structure is wood, they must be connected to a common ground source. In some cases, after one end of the jumper has been permanently attached to one conductor, electrical induction may be so severe that a third personal ground will be required to bond the loose end of the jumper to the other conductor in order that the jumper can be permanently attached. 10.7 Clipping In. The clipping portion of the conductor stringing operation involves the work following sagging and plumb marking of the conductors. This entails removing the conductors from the travelers and placing them in their permanent suspension clamps attached to the insulator assemblies. Clipping begins once the conductor has been brought to sag and is initiated by placing plumb marks on the conductor directly below the insulator attachment points on the structures with a plumb marker pole. This marking is done as soon as possible after reaching sag to minimize the effect of creep and possible movement of the conductor between spans. In rugged terrain, clipping offsets may be used whereby the suspension clamp, rather than being placed at the plumb marks, is offset a calculated distance from the mark to compensate for the unevenness of the terrain and to allow the insulator assemblies to hang vertically when all structures have been clipped in. When clipping is being done, care must be exercised to be certain that the conductors are grounded prior to clipping, despite the fact that the lines being clipped are not attached to any electrical source. This involves placing a personal ground upon the conductor at the location being worked. After the conductors have been marked, personnel lift the weight of the conductors, allowing the travelers to be removed and the suspension clamps, and armor rod if used, to be placed on the conductors. Lifting is normally done by use of a hoist suspended from the structure and a conductor lifting hook which is designed so as not to notch or severely bend the conductors. After placing the suspension clamps on the conductor, the hooks are lowered, thereby placing the weight of the conductor on the suspension clamp and completing the assembly. Where bundled conductors are used, the multiple conductors may be lifted simultaneously by the use of a yoke arrangement supporting the hooks and a single hoist or other lifting means. 10.8 Damper Installation. Dampers are normally placed on the conductors immediately following clipping to prevent any possible wind vibration damage to the conductors which at critical tensions and wind conditions can occur in a matter of a few hours. 10.9 Spacer Installation. Following the clipping sequence of operations for bundled conductor lines, spacers must usually be installed. This is done by placing personnel on the conductors with the use of a conductor car to ride from structure to structure. Depending on the amount of line to be spaced and the equipment available, cars may be hand powered, towed by persons on the ground or in adjacent structures with ropes, or powered by a small engine on the car itself. Care must be exercised to ensure that the concentrated load of the man, car and equipment does not increase the sag sufficiently to cause a hazard from obstructions over which the car will pass. The installation of the spacers on the conductor varies with the type and manufacture of the spacer and is normally done in accordance with the manufacturer's recommendations. The load of the man, car and equipment should be equally distributed to all subconductors of the phase. This is particularly important at the time each spacer is attached. #### **Appendixes** (These Appendixes are not a part of IEEE Std 524-1980, IEEE Guide to the Installation of Overhead Transmission Line Conductors.) # Appendix A Travelers or Snub Structure Load Calculation The following is a method for calculating the actual load on travelers and snub structures when tension stringing. If structures are at the same elevation and there are no angles in the line, only the first and last travelers need to be considered. However, in rough terrain and when angles are encountered, the load at these points should also be calculated. For snub structure loading the weight of insulator assemblies and travelers must also be considered. A = distance of tensioner or puller from structure B = height of structure arm from elevation of tensioner or puller D =sag during stringing operation E = difference in elevation between points of attachment F° = angle of conductor from tensioner or puller to horizontal G° = angle tangent to conductor and horizontal K° = azimuth angle of departure in line L = length of span $R_{\rm H}$ = horizontal load on traveler $R_{\rm V}$ = vertical load on traveler $R_{\rm max}$ = total load on traveler T = line tension Example: Stringing tension is 5000 lb (T) and you locate your tensioner 300 ft (A) from the first structure. Height from the point of attachment of the traveler to the elevation of the tensioner is 100 ft (B). The first span is 1000 ft (L) and sag during stringing is to be 50 ft (D). Angle of departure from the lead-in from the tensioner is 16° (K). The difference in elevation from the first to the second structure is 98 ft (E). The resultant load on the traveler is calculated as shown on Page 48. $$A = 300 \text{ ft}$$ $L = 1000 \text{ ft}$ $B = 100 \text{ ft}$ $D = 50 \text{ ft}$ $E = 98 \text{ ft}$ Tan $$F = \frac{B}{A}$$ Tan $G = \frac{E + 4D}{L}$ Tan $$F = \frac{100}{300}$$ Tan $G = \frac{98 + 4 \cdot 50}{1000} = \frac{298}{1000}$ $$F = 18.4^{\circ}$$ $G = 16.6^{\circ}$ The lead-in angle is 18.4° from horizontal and the lead-out angle is 16.6° . The traveler will bisect the total angle of 35° , actually giving a 17.5° angle on either side. $$T = 5000 \text{ lb} K = 16^{\circ}$$ To solve for R_{V} : $$R_{\rm V} = 2 T \sin \frac{F^{\circ} + G^{\circ}}{2}$$ $$R_{\rm V} = 2 \cdot 5000 \cdot \sin 17.5^{\circ}$$ $$R_{\rm V} = 3000 \, {\rm lb}$$ To solve for $R_{\rm H}$: $$R_{\rm H} = 2 T \sin \frac{K^{\circ}}{2}$$ $$R_{\rm H} = 2 \cdot 5000 \cdot \sin 8^{\circ}$$ $$R_{\rm H}$$ = 1390 lb To solve for R_{max} : $$R_{\text{max}} = \sqrt{3000^2 + 1390^2}$$ $$R_{\text{max}} = 3.307 \text{ lb}$$ Therefore, the total load on the traveler is 3.307 lb. This value is approximate as the above formulas are based on parabolic rather than catenary equations and sag is disregarded between the tensioner and first traveler. However, this method gives slightly less than actual load. # Appendix B Efficiency of Travelers During Tension Stringing The question of the efficiency of travelers often arises when planning overhead line construction jobs. Before this can be determined, the amount of force, holding power or tension just to support the wire in the span must be calculated. For a level span this can easily be done with the following formula. $$T_1 = \frac{WL^2}{8D}$$ W =weight per unit length of conductor D = sag (sag during stringing, not final sag) L = span length T_1 = tension to support wire in span (static condition) Knowing the tension required to support the wire in a static condition, the next consideration is the amount of tension needed to pull the wire across the supports, which in this case are the travelers. The additional tension required here is primarily the work to bend the wire, not to overcome the friction on the bearings of the travelers. If a solid round metal bar is bent around a radius, the metal on the inside of the bend must compress and the metal on the outside of the bend must stretch. It takes a considerable amount of force acting through an appreciable distance to bend such a rigid bar. Force acting through a distance is called work. Wire rope, cable, strand or conductor is made much more flexible than a solid bar by taking round wires and forming them into a helix. The greater flexibility of such a structure is due to the fact that the wire at any point on the inside of the bend does not have to compress, or on the outside of the bend, stretch. Instead, the wire simply slips around the helix so as to adjust for the shortening on the inside and the lengthening on the outside of the bend. However, these wires are pressed together with considerable pressure. The pressure is due to and is proportional to the tension in the cable (the pull on the cable). Thus the slipping of the wire around the helix when the cable is bent is accompanied by considerable friction. Therefore, while it takes a great deal less work to bend a cable than it does to bend a solid bar, still it does involve an appreciable amount of work. Friction is proportional to the tension in the cable. Thus, the higher the tension, the more work is required to bend the cable around a radius. At each point of support as the cable or conductor is being pulled, it must bend to the sheave radius of the traveler at the entering side and then must be straightened out again at the leaving side. Thus an appreciable amount of work (or resistance to pull) is developed at each sheave. The amount of work (resistance to pull) is proportional to the tension and is inversely proportional to the diameter of the sheave because it obviously takes more to bend around a smaller arc than around a larger
arc. From this it is apparent that the tension becomes greater as each traveler is passed since this tension builds up progressively at each support. If we assume 2% loss at each block, then the efficiency is 98% at each support. To solve for the total loss or the total efficiency, the number of travelers must be an exponent of the efficiency. The efficiency will vary depending on the size of the wire, size of the block, and other factors discussed above. Efficiency at 98% is used as representative under normal conditions encountered. From this, if the initial tension before entering the first sheave = T_1 , and the final tension after passing over N number of supports = T_{max} , then: $$T_{\text{max}} = \frac{T_1}{0.98^N}$$ where T_1 = tension to support first span 0.98 = the efficiency at each traveler N = number of supports #### Example: D = 50 ft (sag in ft during stringing) W = 2 lb (weight of conductor per ft) L = 1000 ft (span length in ft) T_1 = tension to support first span N = 8 (number of supports) 0.98 = assumed efficiency at each traveler T_{max} = tension to pull conductor $$T_1 = \frac{WL^2}{8D} = \frac{2 \cdot 1000^2}{8 \cdot 50}$$ $$T_1 = 5000 \, \text{lb},$$ then $$T_{\text{max}} = \frac{T_1}{0.98N} = \frac{5000}{0.98^8} = \frac{5000}{0.8508} = 5877 \text{ lb}$$ This formula, explanation and example are published in this form as a guide. Many factors affect the value being sought. This is an acceptable figure in most instances. In the case of actual varying field conditions encountered, an allowance should be considered. Many variables will affect the assumed 98% efficiency of the travelers. Should very small sheaves be used, the efficiency of the travelers will be much less. On the other hand, cases of large sheaves, over 20 times conductor diameter at bottom of groove, have resulted in efficiency of over 99%. This is important as it must be considered in the selection of pulling and tensioning equipment and pulling lines. # Appendix C Recommended Bearing Pressure on Sheave Linings Considering bearing pressure between conductors and stringing sheaves, it is to be noted that the pressure per unit of length between the conductor and sheave groove is a function of the tension (T) in the conductor and the diameter of the sheave to the bottom of the groove $(D_{\rm s})$ and the diameter of the conductor $(D_{\rm c})$. The pressure is independent of the angle of radial contact around the sheave and the resulting load on the traveler. The bearing pressure is therefore expressed by the following equation: $$P = \frac{3T}{D_{\rm s}D_{\rm c}}$$ P = bearing pressure T = conductor tension $D_{\rm s}$ = diameter of sheave to bottom of groove D_{c} = diameter of conductor or pulling line Limits or guidelines for conductors have been 500-700 for lined sheaves, less for unlined ones. To obtain reasonable wear on sheave linings maximum allowable unit bearing pressures for steel pulling lines is 2000 for Neoprene, 3500 for Urethane. #### Examples: $T = 12\,000$ lb for pulling line T = 6000 lb for each conductor $D_{\rm s}$ = 24 in (28 in sheave, 24 in bottom of groove diameter) $D_c = 0.625$ in (diameter of pulling line) $D_c = 1.502$ in (diameter of conductor) $$P = \frac{3 \cdot 12\ 000}{24 \cdot .625}$$ P = 2388 representing unit bearing pressure for the $\frac{5}{8}$ in OD pulling line $$P = \frac{3 \cdot 6\ 000}{24 \cdot 1.502}$$ P = 500 representing unit bearing pressure for the 1.502 in OD conductor Appendix D All Aluminum 1350* Alloy Conductor Standard Packages | Code | SIZE | | | No ** | Conductor
Diameter | | Rated | Wt Per | Wt. Per | Reel | | Standard Packaging | | | | |---------------|--------|-------|-----------|--------------|-----------------------|-------|----------|--------------|--------------|--|----------------|--------------------|----------------|-----------------|----------| | Word | | | Strands | of
Layers | L | | Strength | 1000 ft | km | | sign | Wei | _ | Len | <u> </u> | | | kemil | (mm²) | | | Inches | (mm) | lb | lb | (kg) | - | | lb. | (kg) | ft. | (m) | | Orchid | 636 | 322 | 37 | 2 | .918 | 23.32 | 11 400 | 598.9 | 888.4 | RMT | 84.45 | 7 400 | 3,355 | 12 400 | 3 780 | | | | | | | | | | | | NR | 66.28 | 3 700 | 1,680 | 6,200 | 1 890 | | | | | | | | | | | | RM | 68.32 | 3,700 | 1 680 | 6 200 | 1 890 | | | | | | | | | İ | | | RM | 68.38 | 3.700 | 1 680 | 6,200 | 1 890 | | | | | | | | | | | | NR | 48.28 | 1 850 | 840 | 3 100 | 945 | | Violet | 715.5 | 363 | 37 | 2 | .974 | 24.74 | 12 800 | 672.0 | 1000 | RMT | 84.45 | 7 400 | 3,355 | 11 020 | 3 360 | | | | | | | | | | | | NR | 66.28 | 3 700 | i,680 | 5 510 | 1 680 | | | | | | | | | | | | RM | 68.32 | 3 700 | I 680 | 5 510 | 1 680 | | | | | | | | | | | | RM | 68.38 | 3 700 | 1 680 | 5,510 | 1 680 | | | | | ļ | ļ | | | | | | NR | 48.28 | I 850 | 840 | 2,755 | 840 | | Arbutus | 795 | 403 | 37 | 2 | 1.026 | 26.06 | 13 900 | 746.4 | 1111 | RMT | 84.45 | 7 400 | 3 355 | 9 920 | 3 025 | | | | | | | | | | | | NR | 66.28 | 3 700 | l 680 | 4 960 | 1 510 | | | | | | | 1 | | | | | RM | 66.32 | 3 700 | l 680 | 4,960 | 1 510 | | | | | | | | | | | 1 | RM | 68.38 | 3 700 | 1,680 | 4,960 | 1 510 | | | | | | | L | | | | | NR | 48.28 | 1 850 | 840 | 2 480 | 755 | | Lilac | 795 | 403 | 61 | 3 | 1.028 | 26.11 | 14 300 | 746.8 | 1111 | RMT | 90.45 | 9 760 | 4,425 | 13 080 | 3 985 | | | | | | į. | | | | l | | RM | 68.38 | 4 880 | 2 215 | 6 540 | 1 995 | | Magnolia | 954 | 483 | 37 | 2 | 1.124 | 28.55 | 16,400 | 895.8 | 1333 | RMT | 84.45 | 7 400 | 3 355 | 8,260 | 2 520 | | | 1 | | " | _ | | 20.55 | 10,100 | 075.0 | | NR | 66.28 | 3 700 | 1 680 | 4,130 | 1 260 | | | | | | ļ | | | | | | RM | 66.32 | 3,700 | 1 680 | 4,130 | 1 260 | | | | | | | | | | | | RM | 68.38 | 3,700 | 1 680 | 4,130 | 1 260 | | | | | | | | | | | | NR | 48.28 | 1 850 | 840 | 2 065 | 630 | | Goldenrod | 954 | 483 | 61 | 3 | 1.126 | 28.60 | 16 900 | 896.1 | 1333 | RMT | 90.45 | 9 760 | 4 425 | 10 900 | 3 320 | | Obluentou | 7,4 | 403 | " | , | 1.120 | 28.00 | 10 300 | 890.1 | 1333 | RM | 68.38 | 4 880 | 2 215 | 5 450 | 1 660 | | D11-11 | 1022 5 | 524 | | | 1 170 | 20.72 | 17 700 | 071.0 | 1444 | | | | | 7 630 | 2 325 | | Bluebell | 1033.5 | 524 | 37 | 2 | 1.170 | 29.72 | 17 700 | 971.0 | 1444 | RMT | 84.45
66.28 | 7 400
3,700 | 3 355
1,680 | 3 815 | 1 165 | | | | | | | | | | ĺ | | NR
RM | 66.32 | 3,700 | 1,680 | 3 815 | 1 165 | | | | | | | | | | | | RM | 68.38 | 3 700 | 1 680 | 3 185 | 1 165 | | | | | | | | | | | | NR | 48.28 | 1 850 | 840 | 1 910 | 580 | | | | | | <u> </u> | | | | | | | | | | · | | | Larkspur | 1033.5 | 524 | 61 | 3 | 1.172 | 29.77 | 18 300 | 970.7 | 1444 | RMT | 90.45 | 9 760 | 4,425 | 10 060
5 030 | 3 065 | | | | | <u> </u> | | - | | | | . | RM | 68.38 | 4 880 | 2,215 | | 1 535 | | Marigold | 1113 | 564 | 61 | 3 | 1.216 | 30.89 | 19 700 | 1045 | 1555 | RMT | 90.45 | 9 760 | 4 425 | 9 340 | 2 845 | | | | | ļ | | | | ļ | <u> </u> | - | RM | 68.38 | 4 880 | 2 215 | 4 670 | 1 425 | | Hawthorn | 1192.5 | 604 | 61 | 3 | 1.258 | 31.95 | 21 100 | 1119 | 1665 | RMT | 90.45 | 9 760 | 4 425 | 8 720 | 2 660 | | | ļ | | | | | | | | | RM | 68.38 | 4 880 | 2 215 | 4 360 | 1 330 | | Narcissus | 1272 | 645 | 61 | 3 | 1.300 | 33.02 | 22 000 | 1194 | 1777 | RMT | 90.45 | 9 760 | 4,425 | 8,170 | 2,490 | | | | | | | | | | l . | | RM | 68.38 | 4,880 | 2,215 | 4 085 | 1,245 | | Columbine | 1351.5 | 685 | 61 | 3 | 1.340 | 34.04 | 23 400 | 1269 | 1888 | RMT | 90.45 | 9 760 | 4,425 | 7 690 | 2 345 | | | 1 | | ŀ | | 1 | | | 1 | | RM | 68.38 | 4,880 | 2 215 | 3 845 | 1,170 | | Carnation | 1431 | 725 | 61 | 3 | 1.379 | 35.03 | 24 300 | 1344 | 1999 | RMT | 90.45 | 9 760 | 4 425 | 7 270 | 2,215 | | | | '~' | | _ | 1.377 | 33.03 | 1 2300 | ' | .,,, | RM | 68.38 | 4 880 | 2 215 | 3 635 | 1 110 | | Gladiolus | 1510.5 | 765 | 61 | 3 | 1.417 | 35.99 | 25 400 | 1419 | 2110 | RMT | 90.45 | 9 760 | 4 425 | 6,880 | 2 095 | | Giadiolus | 1310.3 | /63 | " | , | 1.417 | 33.99 | 25 600 | 1419 | 2110 | RM | 68.38 | 4 880 | 2 215 | 3,440 | 1 050 | | | | | <u> </u> | | | | -3 | | | | | | | | | | Coreopsis | 1590 | 806 | 61 | 3 | 1.454 | 36.93 | 27 000 | 1493 | 2222 | RMT | 90.45 | 9 760 | 4 425 | 6 540 | 1,995 | | | - | | | | | ļ | | | - | RM | 68.38 | 4 880 | 2 215 | 3 270 | 995 | | Jessamine | 1750 | 887 | 61 | 3 | 1.525 | 38.74 | 29 700 | 1643 | 2445 | RMT | 90.45 | 9 760 | 4 425 | 5 940 | 1 810 | | | L | | ļ | | L | | ļ | ļ | | RM | 68.38 | 4 880 | 2 215 | 2 870 | 905 | | Cowslip | 2000 | 1013 | 91 | 4 | 1.630 | 41.40 | 34 200 | 1876 | 2793 | RMT | 90.45 | 9 100 | 4 130 | 4 850 | 1 480 | | Sagebrush | 2250 | 1140 | 91 | 4 | 1.729 | 43.92 | 37 700 | 2132 | 3174 | RMT | 90.45 | 9 100 | 4 130 | 4 270 | 1 300 | | Lupine | 2500 | 1267 | 91 | 4 | 1.823 | 46.30 | 41 900 | 2368 | 3527 | RMT | 90.45 | 9 100 | 4 130 | 3 840 | 1 170 | | *Allow 1350 m | | · | ted as EC | | 1.023 | 40.30 | 1 41 700 | 2308 | 3341 | L KIVI I | 70.43 | 7 100 | 1 7 130 | 1 3 0-0 | 1 170 | ^{*}Alloy 1350 was formerly designated as EC. **The number of aluminum layers does not include the 7 central wires which are considered as a core. () Denote approximate value. Appendix E ACSR Conductors Standard Packages | Code | Size | | Strands | No
of | Conductor
Diameter | | Rated
Strength | Wt. Per
1000 ft | Wt. Per
km | Re | | Standard Packaging Weight Length | | | th | | |----------|--------|----------|----------|--------------|-----------------------|--|-------------------|--------------------|---------------|-----|-------|----------------------------------|------------|--------|---------|--| | Word | | | Al/stl | Layers | | | | | | Des | ign | | | | ft. (m) | | | | kemil | (mm²) | | - | Inches | (mm) | lb | lb | (kg) | | | | | | 1.835 | | | Cingbird | 636 | 322 | 18/1 | 2 | .940 | 23.88 | 15 700 | 691 |
1027 | RM | 66.32 | 4 160 | 1,885 | 6,020 | 1 835 | | | | | | | | | ļ | | | | NR | 66.28 | 4.160 | 1 885 | | | | | | | | | | | | | | 1 | RM | 68.38 | 4,160 | 1,885 | 6 020 | 1.835 | | | | | | | | | | | | | NR | 48.28 | 2,080 | 945 | 3 010 | 915 | | | | | | | | | | | | ļ | NR | 42.28 | 1,385 | 630 | 2 005 | 610 | | | Rook | 636 | 322 | 24/7 | 2 | .977 | 24.82 | 22,000 | 819 | 1219 | RMT | 84.36 | 6 550 | 2,970 | 8 000 | 2,440 | | | | | | | | | | | | | RMT | 84.45 | 6 550 | 2 970 | 8,000 | 2,440 | | | | | | | | | | | | | NR | 60.28 | 3 275 | 1 485 | 4 000 | 1,220 | | | | (3) | 222 | 26/7 | 2 | .990 | 25.15 | 25 200 | 875 | 1302 | RMT | 84.36 | 7 590 | 3 445 | 8 670 | 2 645 | | | Grosbeak | 636 | 322 | 20// | 1 - | .990 | 23.13 | 2,7 200 | 0,,, | 1302 | RMT | 84.45 | 7.590 | 3 445 | 8 670 | 2 645 | | | | | | | ĺ | | | | | ì | NR | 60.28 | 3 795 | 1 720 | 4 335 | 1 320 | | | | | | - | | | | | | | | | | | 9 980 | 3 040 | | | Egret | 636 | 322 | 30/19 | 2 | 1.019 | 28.88 | 31 500 | 988 | 1470 | RMT | 84.45 | 9 860 | 4 470 | | | | | | | | | | | | | | ļ | RM | 66.32 | 4 930 | 2 235 | 4 990 | 1 520 | | | | | | | | | | | | | NR | 66.28 | 4 930 | 2 235 | 4 990 | 1 520 | | | | | | <u> </u> | | | | | | ļ | RM | 68.38 | 4,930 | 2 235 | 4 990 | 1 520 | | | Flamingo | 666.6 | 338 | 24/7 | 2 | 1.000 | 25.40 | 23 700 | 859 | 1277 | RMT | 84.36 | 6,550 | 2 970 | 7,630 | 2 325 | | | 1 named | 000.0 | | | - | | | | | | RMT | 84.45 | 6,550 | 2 970 | 7,630 | 2 325 | | | | | | | ļ | | | | | | NR | 60.28 | 3.275 | 1,485 | 3,815 | 1,165 | | | | | | 24/2 | 1. | . 051 | 27, 70 | 20,400 | 985 | 1466 | RMT | 84.36 | 7 590 | 3 445 | 7,710 | 2,350 | | | Starling | 715.5 | 363 | 26/7 | 2 | 1.051 | 26.70 | 28 400 | 963 | 1400 | RMT | 84.45 | 7,590 | 3,445 | 7 710 | 2,350 | | | | | ļ | 1 | | | | | ì | | | | 3 795 | 1 720 | 3,855 | 1,175 | | | | | | ļ | <u> </u> | ļ | | | | | NR | 60.28 | | | | | | | Redwing | 715.5 | 363 | 30/19 | 2 | 1.081 | 27.46 | 34 600 | 1,111 | 1653 | RMT | 84.45 | 9,860 | 4 470 | 8 880 | 2 705 | | | | | | | 1 | | | | | 1 | RM | 66.32 | 4.930 | 2 235 | 4 440 | 1,355 | | | | | | i | | | | | | | NR | 66.28 | 4,930 | 2 235 | 4 440 | 1,355 | | | | | | | | | | | l | | RM | 68.38 | 4 930 | 2.235 | 4,440 | 1,355 | | | Cuckoo | 795 | 403 | 24/7 | 2 | 1.092 | 27.74 | 27 900 | 1 024 | 1522 | RMT | 84.36 | 6,550 | 2,970 | 6,400 | 1 950 | | | | | | | 1 | | | | | | RMT | 84.45 | 6 550 | 2 970 | 6 400 | 1 950 | | | | | | | | | | | <u> </u> | | NR | 60.28 | 3 275 | 1 485 | 3.200 | 975 | | | Drake | 795 | 403 | 26/7 | 2 | 1.108 | 28.14 | 31 500 | 1 094 | 1628 | RMT | 90.45 | 11 380 | f 160 | 10 400 | 3,170 | | | Diake | 173 | 70.7 | 2017 | - | 1.100 | 20 | | | | RMT | 84.36 | 7 590 | 3 445 | 6,940 | 2,115 | | | | | | | | 1 | ĺ | | İ | l | RMT | 84.45 | 7 590 | 3 445 | 6 940 | 2,115 | | | | | | İ | | | | | | | NR | 60.28 | 3 795 | 1,720 | 3 470 | 1,060 | | | | | - | + | | | | | 004 | 1222 | RMT | 90.45 | 10,750 | 4 875 | 12.000 | 3.660 | | | Tern | 795 | 403 | 45/7 | 3 | 1.063 | 27.00 | 22 100 | 896 | 1333 | 1 | | 5,375 | 2 440 | 6,000 | 1 830 | | | | | | | | | | 1 | | | RM | 68.38 | | 1 625 | 4 000 | 1 220 | | | | | <u> </u> | | ļ | | | | | - | NR | 60.28 | 3.585 | — — | | 1 | | | Condor | 795 | 403 | 54/7 | 3 | 1.093 | 27.76 | 28,200 | 1 024 | 1524 | RMT | 90.45 | 11,800 | 5 350 | 11 520 | 3 510 | | | | | 1 | | | İ | | <u> </u> | 1 | | RM | 68.38 | 5 900 | 2,675 | 5,760 | 1 755 | | | Mallord | 795 | 403 | 30/19 | 2 | 1.140 | 28.96 | 38 400 | 1 235 | 1838 | RMT | 84.45 | 9,860 | 4 470 | 7 980 | 2 430 | | | Mallard | /95 | 403 | 30/19 | ` - | 1.140 | 20.70 | 33 400 | , 2.,3, | 10.3 | RM | 66.32 | 4 930 | 2 235 | 3,990 | 1 215 | | | | | | | | | | | | | NR | 66.28 | 4,930 | 2 235 | 3 990 | 1 215 | | | Ì | | 1 | | | 1 | | | | | RM | 66.28 | 4 930 | 2 235 | 3 990 | 1.215 | | | | + | + | +- | + | + | | - | + | - | - | | | 1 | 1 | 3 105 | | | Сапагу | 900 | 456 | 54/7 | 3 | 1.162 | 29.51 | 31.900 | 1 159 | 1725 | RMT | 90.45 | 11 800 | 5 350 | 10 180 | ì | | | | | 4 | 1 | | \perp | + | - | - | | RM | 68.38 | 5 900 | 2 675 | 5 090 | 1,550 | | | Rail | 954 | 483 | 45/7 | 3 | 1.165 | 29.59 | 25 900 | 1.075 | 1600 | RMT | 90.45 | 10 750 | 4.875 | 10,000 | 3,050 | | | | | 1 | | | | | 1 | | | RM | 68.38 | 5 375 | 2 440 | 5 000 | 1,525 | | | | | | | | | | 1 | | | NR | 60.28 | 3.585 | 1,625 | 3.335 | 1.01 | | | C. d. | 000 | 40. | 545 | 1, | 1 104 | 30.39 | 33 800 | 1,229 | 1829 | RMT | 90.45 | 11,800 | 5,350 | 9,600 | 2,92 | | | Cardinal | 954 | 483 | 54/7 | 3 | 1.196 | 30.38 | 35 800 | 1,229 | 1029 | RM | 68.38 | 5 900 | 2,675 | 4,800 | 1,46 | | | | | +- | + | + | | + | + | + | + | | | | T | + | | | | Ortolan | 1033.5 | 5 524 | 45/7 | 3 | 1.212 | 30.78 | 27,700 | 1,164 | 1734 | RMT | 90.45 | 10,750 | 4 875 | 9 230 | 2.81 | | | | | | | | ļ | 1 | | 1 | | RM | 68.38 | 5 375 | 2 440 | 4 615 | 1 40 | | | Ì | | | 1. | | | | | | | NR | 60.28 | 3 585 | 1,625 | 3 075 | 93 | | | Curlew | 1033. | 5 52 | 4 54/7 | 3 | 1.244 | 31.60 | 36 600 | 1 330 | 1981 | RMT | 90.45 | 11 800 | 5,350 | 8 870 | 2 70 | | | Curiew | 1055. | ،22 | 7 34// | 1 ' | 1.244 | 1 51.00 | 1 30 000 | 1 ' ' | 1 ,,,,,, | RM | 68.38 | 5 900 | | 4 435 | 1 35 | | | C-4- | Siz | 70 | Strands | No | | luctor | Rated | Wt Per | Wt Per | D | Reel | | Standard Packaging | | | | |---------------------------------------|--------|-------|---------|--------|--------|--------|----------|---------|--------|-----|-------|--------|--------------------|--------|-------|--| | Code
Word | 314 | | Al/stl | of | Diar | neter | Strength | 1000 ft | km | | sign | Weight | | Length | | | | | kemil | (mm²) | | Layers | Inches | (mm) | lb | lb | (kg) | | | lb | (kg) | ft | (m) | | | Bluejay | 1113 | 564 | 45/7 | 3 | 1.259 | 31.98 | 29 800 | 1 255 | 1868 | RMT | 90.45 | 10 750 | 4 875 | 8 570 | 2 610 | | | | | | Ì | | | | | | | RM | 68.38 | 5 375 | 2 440 | 4 285 | 1 305 | | | | | | | | | | | | | NR | 60.28 | 3 585 | 1 625 | 2,855 | 870 | | | Finch | 1113 | 564 | 54/19 | 3 | 1.293 | 32.84 | 39 100 | 1 431 | 2130 | RMT | 90.45 | 11 720 | 5,315 | 8,200 | 2.500 | | | | | | | | | | | | | RM | 68.38 | 5 860 | 2 660 | 4.100 | 1 250 | | | Bunting | 1192.5 | 604 | 45/7 | 3 | 1.302 | 33.07 | 32 900 | 1 344 | 2000 | RMT | 90.45 | 10 750 | 4 875 | 8 000 | 2 440 | | | | | | | | İ | | | | | RM | 68.38 | 5 375 | 2 440 | 4 000 | 1 220 | | | | | | | | | | | | | NR | 60.28 | 3 585 | 1 625 | 2 665 | 810 | | | Grackle | 1192.5 | 604 | 54/19 | 3 | 1.333 | 33.86 | 41 900 | 1 533 | 2281 | RMT | 90.45 | 11,720 | 5 315 | 7 650 | 2.330 | | | | | | | | | | | | | RM | 68.38 | 5,860 | 2 660 | 3 825 | 1 165 | | | Bittern | 1272 | 645 | 45/7 | 3 | 1.345 | 34.16 | 34 100 | 1 434 | 2134 | RMT | 90.45 | 10 750 | 4 875 | 7 500 | 2 285 | | | | | | | | | | | | 2.5. | RM | 68.38 | 5 375 | 2 440 | 3 750 | 1 145 | | | | | | | | | | | | | NR | 60.28 | 3 585 | 1 625 | 2 500 | 760 | | | Pheasant | 1272 | 645 | 54/19 | 3 | 1.382 | 35.10 | 43 600 | 1 635 | 2433 | RMT | 90.45 | 11 720 | 5 315 | 7 175 | 2 185 | | | | | | | - | | | .5 666 | . 000 | 21.55 | RM | 68.38 | 5 860 | 2 660 | 3 585 | 1,095 | | | Dipper | 1351.5 | 685 | 45/7 | 3 | 1.385 | 35.18 | 36 200 | 1 523 | 2266 | RMT | 90.45 | 10 750 | 4 875 | 7,060 | 2,150 | | | ., | | *** | | | 1.505 | 35.10 | 30 200 | 1 323 | 2200 | RM | 68.38 | 5 375 | 2 440 | 3,530 | 1 075 | | | | | | ĺ | | | | | | | NR | 60.28 | 3 585 | 1 625 | 2 355 | 720 | | | Martin | 1351.5 | 685 | 54/19 | 3 | 1.424 | 36.17 | 46 300 | 1 737 | 2585 | RMT | 90.45 | 11,720 | 5.315 | 6 755 | 2 060 | | | |] | | | | 1.424 | | 40 100 | 1 /5/ | 2.363 | RM | 68.38 | 5.860 | 2.660 | 3 375 | 1.030 | | | Bobolink | 1431 | 725 | 45/7 | 3 | 1.427 | 36.25 | 38 300 | I 613 | 2400 | RMT | 90.45 | 10 750 | 4 875 | 6 665 | 2,030 | | | | | | , | | | 30.23 | 00.00 | 1 015 | 2400 | RM | 68.38 | 5 375 | 2,440 | 3 335 | 1,015 | | | | | | | | | | | | | NR | 60.28 | 3,585 | 1 625 | 2 220 | 675 | | | Plover | 1431 | 725 | 54/19 | 3 | 1.465 | 37.21 | 49 100 | 1,840 | 2738 | RMT | 90.45 | 11,720 | 5 315 | 6 375 | 1,945 | | | | | | | | 11.05 | | 17 100 | 1.010 | 2750 | RM | 68.38 | 5.860 | 2 660 | 3 190 | 970 | | | Nuthatch | 1510.5 | 765 | 45/7 | 3 | 1.466 | 37.24 | 40 100 | 1 702 | 2533 | RMT | 90.45 | 10,750 | 4 875 | 6,320 | 1 925 | | | · · · · · · · · · · · · · · · · · · · | 1310.5 | 705 | 13// | , | 1.400 | 37.24 | 40 100 | 1 702 | 2333 | RM | 68.38 | 5.375 | 2 440 | 3 160 | 965 | | | | | | | | | | | | | NR | 60.28 | 3.585 | 1 625 | 2 110 | 645 | | | Parrot | 1510.5 | 765 | 54/19 | 3 | 1.505 | 38.23 | 51 700 | 1 940 | 2890 | RMT | 90.45 | 11,720 | 5 315 | 6,040 | 1,840 | | | | 107015 | , 0.5 | ,,,, | | 1.505 | 50.25 | 31 700 | 1 240 | 2070 | RM | 68.38 | 5 860 | 2 660 | 3.020 | 920 | | | Lapwing | 1590 | 806 | 45/7 | 3 | 1.504 | 38.15 | 42 200 | 1 792 | 2667 | RMT | 90.45 | 10,750 | 4 875 | 6,000 | 1 830 | | | Lapwing | 1330 | 800 | 43/7 | , | 1.504 | 36.13 | 42 200 | 1 /92 | 2007 | RM | 68.38 | 5,375 | 2 440 | 3,000 | 915 | | | | | | | | | | | } | | NR | 60.28 | 3,585 | 1 625 | 2,000 | 610 | | | Falcon | 1590 | 806 | 54/19 | 3 | 1.545 | 39.24 | 54 500 | 2 044 | 3042 | RMT | 90.45 | 11 720 | 5,315 | 5,740 | 1 750 | | | · alcon | 1390 | 000 | 34/19 | , | 1.343 | 39.24 | 34 700 | 2 044 | 3042 | RM | 68.38 | 5,860 | 2 560 | 2 870 | 875 | | | Chulcos | 1790 | 002 | 94/10 | | 1.402 | 40.46 | £1,000 | 2.075 | 2004 | | | | | | | | | Chukar | 1780 | 902 | 84/19 | 4 | 1.602 | 40.69 | 51 000 | 2 075 | 3086 | RMT | 96.60 | 19,080 | 8.655 | 9,200 | 2,805 | | | Bluebird | 2156 | 1092 | 84/19 | 4 | 1.762 | 44.75 | 60 300 | 2 511 | 3737 | RMT | 96.60 | 18,830 | 8.540 | 7 500 | 2,285 | | | Kiwi | 2167 | 1098 | 72/7 | 4 | 1.737 | 44.12 | 49 800 | 2 303 | 3427 | RMT | 96.60 | 16,120 | 7,310 | 7,000 | 2.135 | | | Thrasher | 2312 | 1172 | 76/19 | 4 | 1,802 | 45.77 | 56 700 | 2 526 | 3761 | RMT | 96.60 | 17,690 | 8.025 | 7,000 | 2.135 | | | Joree | 2515 | 1274 | 76/19 | 4 | 1.880 | 47.75 | 6; 700 | 2 749 | 4091 | RMT | 96.60 |
17,325 | 7 860 | 6,300 | 1 920 | | ^() Denote approximate value #### Appendix F Drum or Reel Winding Stranded members should be wound on a drum or reel according to the lay and the direction of travel. Note the convenient thumb rule. Clench the hand into a fist, but with the thumb and index finger protruding. Use the right hand for right lay and the left hand for left lay. The clenched fingers represent the barrel and the index finger the direction of pull-off. The thumb points to the proper attachment site. Fig F1 ### Appendix G Drum or Reel Capacities Wire rope L = (A+D) A B K (ft) K = Constant as tabulated below and is obtained by dividing 0.2618 ft/in³ by the oversize wire diameter squared* Fiber rope $$L = \frac{B(H^2 - D^2)}{15.2 d^2} \text{ (ft)}$$ d = rope diameter A, B, D, H and d are in inches Fig G1 Table G1 | Nominal | | Nominal | | Nominal | | |--------------|-------------------------|---------------|-------------------------|---------------|------------| | Wire Diam In | K, ft/in ³ * | Wire Diam, In | K, ft/in ³ * | Wire Diam, In | K, ft/in³* | | | | | | | | | 1/16 | 49.8 | 1/2 | .925 | 1 3/8 | .127 | | 3/32 | 23.4 | 9/16 | .741 | 1 1/2 | . 107 | | 1/8 | 13.6 | 5/8 | .607 | 1 5/8 | .0886 | | 5/32 | 8.72 | 11/16 | .506 | 1 3/4 | .0770 | | 3/16 | 6.14 | 3/4 | .428 | 1 7/8 | .0675 | | 7/32 | 4.59 | 13/16 | .354 | 2 | .0597 | | 1/4 | 3.29 | 7/8 | .308 | 2 1/8 | .0532 | | 5/16 | 2.21 | 1 | .239 | 2 1/4 | .0476 | | 3/8 | 1.58 | 1 1/8 | .191 | 2 3/8 | .0419 | | 7/16 | 1.19 | 1 1/4 | .152 | 2 1/2 | .0380 | | | | | | | | ^{*}Values of K allow for normal oversize. Clearance shown on Fig G1 should be 2 inches unless fittings require greater clearance. The formula is based on uniform winding and will not give correct results if wound nonuniformly. It is based on the same number of wraps in each layer which is not strictly correct but which does not result in appreciable error unless the traverse of the reel is quite small compared with the flange diameter (H).